Issue 51

A. Chikh, Frattura ed Integrità Strutturale, 51 (2020) 115-126; DOI: 10.3221/IGF-ESIS.51.09 121 w K Theories 2 p K  0 0.5 1 2 0 Rao et al. [16] 9.8696 14.8040 19.7390 34.5440 Present 9.8538 14.7886 19.7234 29.5930 1 Rao et al. [16] 9.9709 14.9070 19.8410 34.6450 Present 9.9551 14.8899 19.8247 29.6943 10 2 Rao et al. [16] 20.0020 24.9370 29.8710 44.6760 Present 19.9859 24.9207 29.8555 39.7251 10 4 Rao et al. [16] 1023.1000 1028.0000 1032.9000 1047.7000 Present 1023.0656 1028.0004 1032.9352 1042.8048 Table 2 Comparisons of buckling load parameter N of an isotropic-homogeneous beam on elastic foundations L/h = 20 Foundation Parameters L/h = 120 L/h = 15 L/h = 5 w K 2 p K  Chen et al. [14] Ying et al. [15] Present Chen et al. [14] Ying et al. [15] Present Chen et al. [14] Ying et al. [15] Present 0 0 3.14143 3.14145 3.14028 3.13025 3.13227 3.13730 3.04799 3.06373 3.11161 1 3.73588 3.73587 3.73520 3.72657 3.72775 3.73165 3.65802 3.66645 3.70107 2.5 4.29687 4.29689 4.29646 4.28809 4.28886 4.29237 4.21834 4.22319 4.25717 10 2 0 3.74823 3.74823 3.74757 3.73895 3.74012 3.74400 3.67050 3.67882 3.71333 1 4.14356 4.14357 4.14309 4.13472 4.13558 4.13915 4.06636 4.07200 4.10521 2.5 4.58227 4.58227 4.58192 4.57347 4.57410 4.57757 4.49914 4.50278 4.53999 10 4 0 10.02403 10.02403 10.02407 9.99582 9.99583 10.01451 7.34081 7.34081 7.84931 1 10.04813 10.04812 10.04816 10.01970 10.01971 10.03857 7.34095 7.34095 7.84931 2.5 10.08394 10.08393 10.08398 10.05519 10.05520 10.07435 7.34116 7.34116 7.84931 Table 3 . Comparisons of the fundamental frequency parameter 4 2 4 c AL EI     of an isotropic-homogeneous beam on to elastic foundations using diverse beam theories

RkJQdWJsaXNoZXIy MjM0NDE=