Issue 50

L. He et alii, Frattura ed Integrità Strutturale, 50 (2019) 649-657; DOI: 10.3221/IGF-ESIS.50.55 656 [2] Qi, G., Wei, Z., Meng, H., Macias, F.J., Bruland, A. (2016). Free-face-Assisted Rock Breaking Method Based on the Multi-stage Tunnel Boring Machine (TBM) Cutterhead, Rock Mech. Rock Eng., 49(11), pp. 4459–4472. [3] Walton, G., Lato, M., Anschütz, H., Perras, M.A., Diederichs, M.S. (2015). Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation - Experience from the Äspö Hard Rock Laboratory in Sweden, Eng. Geol., 196, pp. 210–221. [4] Maurer, W.C. (1968). Novel drilling techniques, vol. 114, Pergamon Press New York. [5] Kingman, S.W., Jackson, K., Cumbane, A., Bradshaw, S.M., Rowson, N.A., Greenwood, R. (2004). Recent developments in microwave-assisted comminution, Int. J. Miner. Process., 74(1), pp. 71–83. [6] Kingman, S.W., Vorster, W., Rowson, N.A. (2000). The influence of mineralogy on microwave assisted grinding, Miner. Eng., 13(3), pp. 313–327. [7] Lu, G.M., Li, Y.H., Hassani, F., Zhang, X. (2017). The influence of microwave irradiation on thermal properties of main rock-forming minerals, Appl. Therm. Eng., 112, pp. 1523–1532. [8] Monti, T., Tselev, A., Udoudo, O., Ivanov, I.N., Dodds, C., Kingman, S.W. (2016). High-resolution dielectric characterization of minerals: A step towards understanding the basic interactions between microwaves and rocks, Int. J. Miner. Process., 151, pp. 8–21. [9] Hartlieb, P., Toifl, M., Kuchar, F., Meisels, R., Antretter, T. (2016). Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution, Miner. Eng., 91, pp. 34–41. [10] Satish, H., Ouellet, J., Raghavan, V., Radziszewski, P. (2006). Investigating microwave assisted rock breakage for possible space mining applications, Min. Technol., 115(1), pp. 34–40. [11] Hartlieb, P., Leindl, M., Kuchar, F., Antretter, T., Moser, P. (2012). Damage of basalt induced by microwave irradiation, Miner. Eng., 31(3), pp. 82–89. [12] Hassani, F., Nekoovaght, P.M., Gharib, N. (2016). The influence of microwave irradiation on rocks for microwave- assisted underground excavation, J. Rock Mech. Geotech. Eng., 8(1), pp. 1–15. [13] Peinsitt, T., Kuchar, F., Hartlieb, P., Moser, P., Kargl, H., Restner, U., Sifferlinger, N.A. (2010). Microwave heating of dry and water saturated basalt, granite and sandstone, Int. J. Min. Miner. Eng., 2(1), pp. 18-29(12). [14] John, R.S., Batchelor, A.R., Ivanov, D., Udoudo, O.B., Jones, D.A., Dodds, C., Kingman, S.W. (2015). Understanding microwave induced sorting of porphyry copper ores, Miner. Eng., 84, pp. 77–87. [15] Zheng, Y.L., Zhang, Q.B., Zhao, J. (2017). Effect of microwave treatment on thermal and ultrasonic properties of gabbro, Appl. Therm. Eng., 127, pp. s1359431117306622. [16] Whittles, D.N., Kingman, S.W., Reddish, D.J. (2003). Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage, Int. J. Miner. Process., 68(1), pp. 71–91. [17] Jones, D.A., Kingman, S.W., Whittles, D.N., Lowndes, I.S. (2005). Understanding microwave assisted breakage, Miner. Eng., 18(7), pp. 659–669. [18] Jones, D.A., Kingman, S.W., Whittles, D.N., Lowndes, I.S. (2007). The influence of microwave energy delivery method on strength reduction in ore samples, Chem. Eng. Process. Process Intensif., 46(4), pp. 291–299. [19] Ali, A.Y., Bradshaw, S.M. (2010). Bonded-particle modelling of microwave-induced damage in ore particles, Miner. Eng., 23(10), pp. 780–790. [20] Wang, Y., Djordjevic, N. (2014). Thermal stress FEM analysis of rock with microwave energy, Int. J. Miner. Process., 130(28), pp. 74–81. [21] Meisels, R., Toifl, M., Hartlieb, P., Kuchar, F., Antretter, T. (2015). Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks, Int. J. Miner. Process., 135(3), pp. 40–51. [22] Toifl, M., Meisels, R., Hartlieb, P., Kuchar, F., Antretter, T. (2016). 3D numerical study on microwave induced stresses in inhomogeneous hard rocks, Miner. Eng., 90, pp. 29–42. [23] Ghazvinian Vaneghi, G., Hadei, M., R., Azinfar, M. J. (2013). Shear behavior of inherently anisotropic rocks, Int. J. Rock Mech. Min. Sci., 61(7), pp. 96–110. [24] Liu, H.Z., Xie, H.Q., He, J.D., Xiao, M.L., Zhuo, L. (2016). Nonlinear creep damage constitutive model for soft rocks, Mech. Time-Dependent Mater., 21(1), pp. 1–24. [25] Zhang, W., Qian, H., Sun, Q., Chen, Y. (2015). Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone, Environ. Earth Sci., 74(7), pp. 5739–5748. [26] Yin, T.B., Shu, R.H., Xi-Bing, L.I., Wang, P., Liu, X.L. (2016). Comparison of mechanical properties in high temperature and thermal treatment granite, Trans. Nonferrous Met. Soc. China, 26(7), pp. 1926–1937. [27] Yao, M., Rong, G., Zhou, C., Peng, J. (2016). Effects of Thermal Damage and Confining Pressure on the Mechanical Properties of Coarse Marble, Rock Mech. Rock Eng., 49(6), pp. 2043–2054.

RkJQdWJsaXNoZXIy MjM0NDE=