Issue 50
Q. Hu et alii, Frattura ed Integrità Strutturale, 50 (2019) 638-648; DOI: 10.3221/IGF-ESIS.50.54 647 [2] Fan, L. F., Z. J. Wu, Z. Wan, and J. W. Gao. (2017). Experimental investigation of thermal effects on dynamic behavior of granite. Appl. Therm. Eng. 125(2017), pp. 94-103. DOI: 10.1016/j.applthermaleng.2017.07.007 [3] Becattini, V., T. Motmans, A. Zappone, C. Madonna, A. Haselbacher, and A. Steinfeld. (2017). Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl. Energ. 203(2017), pp. 373-389. DOI: 10.1016/j.apenergy.2017.06.025. [4] Hartlieb, P., and S. Bock. (2017). Theoretical Investigations on the Influence of Artificially Altered Rock Mass Properties on Mechanical Excavation. Rock. Mech. Rock. Eng. 11(2017), pp. 1-9. DOI: 10.1007/s00603-017-1355-3. [5] Zheng, Y. L., Q. B. Zhang, and J. Zhao. (2017). Effect of microwave treatment on thermal and ultrasonic properties of gabbro. Appl. Therm. Eng. 127(2017), pp. 359-369. DOI: 10.1016/j.applthermaleng.2017.08.060. [6] Satish, H., J. Ouellet, V. Raghavan, and P. Radziszewski. (2013). Investigating microwave assisted rock breakage for possible space mining applications. Min. Technol. 115(1), pp. 34-40. DOI: 10.1179 / 174328606X101902. [7] Meisels, R., M. Toifl, P. Hartlieb, F. Kuchar, and T. Antretter. (2015). Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks. Int. J. Miner. Process. 135(2015), pp. 40-51. DOI: 10.1016/j.minpro.2015.01.003. [8] Nelson, S., D. Lindroth, and R. Blake. (1989). Dielectric Properties of Selected and Purified Minerals at 1 to 22 GHz. J. Microwave. Power. 24(4), pp. 213-220. DOI: 10.1080/08327823.1989.11688096. [9] Ulaby, F. T., T. H. Bengal, M. C. Dobson, J. R. East, J. B. Garvin, and D. L. Evans. (1990). Microwave dielectric properties of dry rocks. Ieee. T. Geosci. Remote. 28(3), pp. 325-336. DOI: 10.1109/36.54359. [10] Lu, G. M., Y. H. Li, F. Hassani, and X. Zhang. (2017). The influence of microwave irradiation on thermal properties of main rock-forming minerals. Appl. Therm. Eng. 112(2017), pp. 1523-1532. DOI: 10.1016/j.applthermaleng.2016.11.015. [11] Toifl, M., R. Meisels, P. Hartlieb, F. Kuchar, and T. Antretter. (2015). 3D numerical study on microwave induced stresses in inhomogeneous hard rocks. Miner. Eng. 90(2015), pp. 29-42. DOI: 10.1016/j.mineng.2016.01.001 [12] Batchelor, A. R., A.J. Buttress, D. A. Jones, J. Katrib, D. Way, T. Chenje, D. Stoll, C. Dodds, and S. W. Kingman. (2017). Towards large scale microwave treatment of ores: Part 2–Metallurgical testing. Miner. Eng. 111(2017), pp. 5-24. DOI: 10.1016/j.mineng.2017.05.003 [13] Hartlieb, P., F. Kuchar, P. Moser, H. Kargl, and U. Restner. (2018). Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity. Miner. Eng. 118(2018), pp. 37-51. DOI: 10.1016/j.mineng.2018.01.003 [14] Toifl, M., P. Hartlieb, R. Meisels, T. Antretter, and F. Kuchar. (2016). Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite. Miner. Eng. 103-104(2016), pp. 78-92. DOI: 10.1016/j.mineng.2016.09.011 [15] Yang, S. Q., P. G. Ranjith, H. W. Jing, W. L. Tian, and Y. Ju. (2017). An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics. 65(2017), pp. 180-197. DOI: 10.1016/j.geothermics.2016.09.008 [16] Zhang, Y., Q. Sun, and J. Geng. (2017). Microstructural characterization of limestone exposed to heat with XRD, SEM and TG-DSC. Mater. Charact. 134(2017), pp. 285-295. DOI: 10.1016/j.matchar.2017.11.007 [17] Zhang, W., Q. Sun, S. Zhu, and B. Wang. (2017). Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Appl. Therm. Eng. 110(2017), pp. 356-362. DOI: 10.1016/j.applthermaleng.2016.08.194. [18] Sirdesai, N. N., T. N. Singh, and R. P. Gamage. (2017). Thermal alterations in the poro-mechanical characteristic of an Indian sandstone-A comparative study. Eng. Geol. 226(2017), pp. 208-220. DOI: 10.1016/j.enggeo.2017.06.010. [19] Plevova, E., L. Vaculikova, A. Kozusnikova, M. Ritz, and G. S. Martynkova. (2016). Thermal expansion behaviour of granites. J. Therm. Anal. Calorim. 123(2), pp. 1555-1561. DOI: 10.1007/s10973-015-4996-z. [20] Tiskatine, R., A. Eddemani, L. Gourdo, B. Abnay, A. Ihlal, A. Aharoune, and L. Bouirden. (2016). Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage. Appl. Energ. 171(2016), pp. 243-255. DOI: 10.1016/j.apenergy.2016.03.061. [21] Zhu, S., W. Zhang, Q. Sun, S. Deng, J. Geng, and C. Li. (2017). Thermally induced variation of primary wave velocity in granite from Yantai: Experimental and modeling results. Int. J. Therm. Sci. 114(2017), pp. 320-326. DOI: 10.1016/j.ijthermalsci.2017.01.008. [22] Zuo, J. P., J. T. Wang, Y. J. Sun, Y. Chen, G. H. Jiang, and Y. H. Li. (2017). Effects of thermal treatment on fracture characteristics of granite from Beishan, a possible high-level radioactive waste disposal site in China. Eng. Fract. Mech. 182(2017), pp. 425-437. DOI: 10.1016/j.engfracmech.2017.04.043.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=