Issue 50

M.R.M. Aliha et alii, Frattura ed Integrità Strutturale, 50 (2019) 602-612; DOI: 10.3221/IGF-ESIS.50.51 610 [16] Bechtle, S., Habelitz, S., Klocke, A., Fett, T., & Schneider, G. A. (2010). The fracture behaviour of dental enamel. Biomaterials, 31(2), pp. 375-384. DOI: 10.1016/j.biomaterials.2009.09.050 [17] Maccagno, T. M., & Knott, J. F. (1989). The fracture behaviour of PMMA in mixed modes I and II. Engineering Fracture Mechanics, 34(1), pp. 65-86. DOI: 10.1016/0013-7944(89)90243-9 [18] Fakhri, M., Amoosoltani, E., & Aliha, M. R. M. (2017). Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber. Engineering Fracture Mechanics, 180, pp. 43-59. DOI: 10.1016/j.engfracmech.2017.05.011 [19] Razavi, S. M. J., Aliha, M. R. M., & Berto, F. (2018). Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theoretical and Applied Fracture Mechanics. 97, pp. 419-425. DOI: 10.1016/j.tafmec.2017.07.004 [20] Abdollahi, A., & Arias, I. (2011). Phase-field simulation of anisotropic crack propagation in ferroelectric single crystals: effect of microstructure on the fracture process. Modelling and Simulation in Materials Science and Engineering, 19(7), 074010. DOI: 10.1088/0965-0393/19/7/074010 [21] Xeidakis, G. S., Samaras, I. S., Zacharopoulos, D. A., & Papakaliatakis, G. E. (1996). Crack growth in a mixed-mode loading on marble beams under three point bending. International journal of fracture, 79(2), pp. 197-208. DOI: 10.1007/BF00032936. [22] Gómez, F. J., Elices, M., Berto, F., & Lazzarin, P. (2009). Fracture of V-notched specimens under mixed mode (I+ II) loading in brittle materials. International journal of fracture, 159(2), 121. DOI: 10.1007/s10704-009-9387-7. [23] Lazzarin, P., Berto, F., Elices, M., & Gómez, J. (2009). Brittle failures from U ‐ and V ‐ notches in mode I and mixed, I+ II, mode: a synthesis based on the strain energy density averaged on finite ‐ size volumes. Fatigue & Fracture of Engineering Materials & Structures, 32(8), pp. 671-684. DOI: 10.1111/j.1460-2695.2009.01373.x [24] Park, S., & Sun, C. T. (1995). Fracture criteria for piezoelectric ceramics. Journal of the American Ceramic Society, 78(6), pp. 1475-1480. DOI: 10.1111/j.1151-2916.1995.tb08840.x [25] Davenport, J. C. W., & Smith, D. J. (1993). A study of superimposed fracture modes I, II and III on PMMA. Fatigue & Fracture of Engineering Materials & Structures, 16(10), pp. 1125-1133. DOI: 10.1111/j.1460-695.1993.tb00082.x [26] Al-Haidary, J. T., Wahab, A. A., & Salam, E. A. (2006). Fatigue crack propagation in austenitic stainless steel weldments. Metallurgical and Materials Transactions A, 37(11), pp. 3205-3214. DOI: 10.1007/BF02586155 [27] Azar, H. F., Choupani, N., Afshin, H., & Moghadam, R. H. (2015). Effect of mineral admixtures on the mixed-mode (I/II) fracture characterization of cement mortar: CTS, CSTBD and SCB specimens. Engineering Fracture Mechanics, 134, pp. 20-34. DOI: 10.1016/j.engfracmech.2014.12.008 [28] Jamali, J., Fan, Y., & Wood, J. T. (2015). The mixed-mode fracture behavior of epoxy by the compact tension shear test. International Journal of Adhesion and Adhesives, 63, pp. 79-86. DOI: 10.1016/j.ijadhadh.2015.08.006 [29] Abd-Elhady, A. (2013). Mixed mode I/II stress intensity factors through the thickness of disc type specimens. Engineering Solid Mechanics, 1(4), pp. 119-128. doi: 10.5267/j.esm.2013.10.001 [30] Mirsayar, M. M., Berto, F., Aliha, M. R. M., & Park, P. (2016). Strain-based criteria for mixed-mode fracture of polycrystalline graphite. Engineering Fracture Mechanics, 156, pp. 114-123. DOI: 10.1016/j.engfracmech.2016.02.011 [31] Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test. Journal of Engineering Materials and Technology, 100(2), pp. 175-182. doi:10.1115/1.3443468. [32] Chang, S. H., Lee, C. I., & Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed- mode conditions by using disc-type specimens. Engineering geology, 66(1-2), pp. 79-97. DOI: 10.1016/S0013-7952(02)00033-9 [33] Aliha, M. R. M., Ayatollahi, M. R., & Akbardoost, J. (2012). Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock mechanics and rock engineering, 45(1), pp. 65-74. DOI: 10.1007/s00603-011-0167-0. [34] Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2017). The influence of specimen type on tensile fracture toughness of rock materials. Pure and Applied Geophysics, 174(3), pp. 1237-1253. DOI: 10.1007/s00024-016-1458-x [35] Ayatollahi, M. R., & Aliha, M. R. M. (2008). Mixed mode fracture analysis of polycrystalline graphite–a modified MTS criterion. Carbon, 46(10), pp. 1302-1308. DOI: 10.1016/j.carbon.2008.05.008 [36] Ayatollahi, M. R., Aliha, M. R. M., & Hassani, M. M. (2006). Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Materials Science and Engineering: A, 417(1-2), pp. 348-356. DOI: 10.1016/j.msea.2005.11.002 [37] Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), pp. 110-123. DOI: 10.1016/j.engfracmech.2010.10.001

RkJQdWJsaXNoZXIy MjM0NDE=