Issue 50

M. Papachristoforou et alii, Frattura ed Integrità Strutturale, 50 (2019) 526-536; DOI: 10.3221/IGF-ESIS.50.44 535 R EFERENCES [1] Khoshnevis, B. (2004). Automated construction by contour crafting-related robotics and information technologies. Automation in Construction, 13(1), pp. 5−19. DOI: 10.1016/j.autcon.2003.08.012. [2] Lim, S., et al. (2011). Development of a viable concrete printing process. Proc. 28 th International Symposium on Automation and Robotics in Construction, (ISARC2011), Seoul, South Korea, pp. 665−670. [3] Cesaretti, G., Dini, E., De Kestelier, X., Colla, V. and Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, pp. 430−450. DOI:10.1016/j. actaastro.2013.07.034. [4] website-6. (2019). ApisCor | en. [online] Available at: https://www.apis-cor.com/en [Accessed 19 Jan. 2019]. [5] 3dwasp.com . (2019). Stampanti 3d | WASP | Azienda leader nelsettoredellastampa 3D. [online] Available at: https:// www.3dwasp.com. [6] CyBe Construction. (2019). CyBe Construction: Redefining construction by enabeling 3d concrete printing by providing hardware, software, material, education, certification and business development. [online] Available at: https://cybe.eu [7] Winsun3d.com. (2019). Contact us- Yingchuang Building Technique (Shanghai) Co.Ltd. (WinSun). [online] Available at: http://www.winsun3d.com/En/Contact/ [Accessed 19 Jan. 2019]. [8] Schutter, G.D., Lesage, K., Mechtcherine, V., Nerella, N.V., Habert, G., Agusti-Juan, I. (2018). Vision of 3D printing with concrete - Technical, economic and environmental potentials. Cement and Concrete Research, 112, pp. 25−36. DOI: 10.1016/j.cemconres.2018.06.001. [9] Rahul, A.V., Santhanam, M., Meena, H., Ghani, Z. (2019). 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites, 97, pp. 13–23. DOI: 10.1016/j.cemconcomp.2018.12.014. [10] Kazemian, A., Yuan, X., Cochran, E. and Khoshnevis, B. (2017). Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials, 145, pp. 639−647. DOI: 10.1016/j.conbuildmat.2017.04.015. DOI: 10.1016/j.conbuildmat.2017.04.015. [11] Perrot, A., Rangeard, D., Pierre, A. (2016). Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Materials and Structures, 49, pp. 1213−1220. DOI: 10.1617/s11527-015-0571-0. [12] Le, T., Austin, S., Lim, S., Buswell, R., Gibb, A. and Thorpe, T. (2012). Mix design and fresh properties for high-per- formance printing concrete. Materials and Structures, 45(8), pp. 1221−1232. DOI:10.1617/s11527-012-9828-z. [13] Ma, L., Zhao, Y. and Gong, J. (2018). Restrained early-age shrinkage cracking properties of high-performance con- crete containing fly ash and ground granulated blast-furnace slag. Construction and Building Materials, 191, pp. 1−12. DOI: 10.1016/j.conbuildmat.2018.09.154. [14] Marchon, D., Kawashima, S., Bessaies-Bey, H., Mantellato, S. and Ng, S. (2018). Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cement and Concrete Research, 112, pp. 96−110. DOI: 10.1016/j.cemconres.2018.05.014. [15] Anastasiou, E., Liapis, A., Papachristoforou, M. (2017). Life cycle assessment of concrete products for special applic- ations containing EAF slag, Procedia Environmental Sciences, 38, pp. 469−476. DOI: 10.1016/j.proenv.2017.03.138 [16] Anastasiou, E., Papayianni, I. (2012). Use of calcareous fly ash in SCC, Conference: EUROCOALASH 2012 Confer- ence, Thessaloniki, Greece. [17] Anastasiou, E., Papayianni, I., Papachristoforou, M. (2014). Behaviour of self compacting concrete containing ladle furnace slag and steel fiber reinforcement, Materials and Design, 59, pp. 454−460. DOI: 10.1016/j.matdes.2014.03.030. [18] Sideris, K., Tassos, Ch., Chatzopoulos, A., Manita, P. (2018). Mechanical characteristics and durability of self com- pacting concretes produced with ladle furnace slag. Construction and Building Materials, 170, pp. 660−667. DOI: 10. 1016/j.conbuildmat.2018.03.091. [19] Shadkam, H.R., Dadsetan, S., Tadayon, M., Sanchez, L.F.M., Zakeri, J.A. (2017). An investigation of the effects of limestone powder and viscosity modifying agent in durability related parameters of self-consolidating concrete (SCC), Construction and Building Materials, 156, pp. 152−160. DOI: 10.1016/j.conbuildmat.2017.08.165. [20] Ling, S.K., Kwan, A.K.H. (2016). Adding limestone fines as cementitious paste replacement to lower carbon foot- print of SCC, Construction and Building Materials, 111, pp. 326−336. DOI: 10.1016/j.conbuildmat.2016.02.072. [21] Li, W., Ghazanfari, A., Leu, M.C., Landers, R.G. (2015). Methods of extrusion on demand for high solids loading ceramic paste in freeform extrusion fabrication. Proc. Solid Freeform Fabrication Symposium 2015, Austin, TX, pp. 332−345. [22] Koehler, E., Fowler, D. (2004). [online] Available at: https://repositories.lib.utexas.edu/handle/2152/35338. [23] EN1015-3. (1999). Methods of test for mortar for masonry, Part 3: Determination of consistence of fresh mortar (by flow table).

RkJQdWJsaXNoZXIy MjM0NDE=