Issue 50

V. Saltas et alii, Frattura ed Integrità Strutturale, 50 (2019) 505-516; DOI: 10.3221/IGF-ESIS.50.42 515 [4] Hasanipanah, M., Jahed Armaghani, D., Monjezi, M., Shams, S. (2016). Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system, Environ. Earth Sci., 75(9), pp. 1–12, DOI: 10.1007/s12665-016-5503-y. [5] De Silva, R.V., Gamage, R.P., Anne Perera, M.S. (2016). An alternative to conventional rock fragmentation methods using SCDA: A review, Energies, 9(11), pp. 1–31, DOI: 10.3390/en9110958. [6] Guo, T., Zhang, S., Ge, H., Qu, Z. (2015). A Novel “Soundless Cracking Agent Fracturing” for Shale Gas Reservoir Stimulation, Int. J. Environ. Sci. Dev., 6(9), pp. 681–7, DOI: 10.7763/IJESD.2015.V6.680. [7] Musunuri, A., Mitri, H. (2009). Laboratory investigation into rock fracturing with expansive cement, Int. J. Min. Miner. Eng., 1(4), DOI: 10.1504/IJMME.2009.029318. [8] Xu, J., Zhai, C., Qin, L., Yu, G. (2017). Evaluation research of the fracturing capacity of non-explosive expansion material applied to coal-seam roof rock, Int. J. Rock Mech. Min. Sci., 94, pp. 103–111, DOI: 10.1016/j.ijrmms.2017.03.004. [9] Guo, T., Zhang, S., Ge, H., Wang, X., Lei, X., Xiao, B. (2015). A new method for evaluation of fracture network formation capacity of rock, Fuel, 140, pp. 778–787, DOI: 10.1016/j.fuel.2014.10.017. [10] Zhai, C., Xu, J., Liu, S., Qin, L. (2018). Fracturing mechanism of coal-like rock specimens under the effect of non- explosive expansion, Int. J. Rock Mech. Min. Sci., 103, pp. 145–154, DOI: 10.1016/j.ijrmms.2018.01.037. [11] Natanzi, A.S., Laefer, D.F., Connolly, L. (2016). Cold and moderate ambient temperatures effects on expansive pressure development in soundless chemical demolition agents, Constr. Build. Mater., 110, pp. 117–127, DOI: 10.1016/j.conbuildmat.2016.02.016. [12] Lockner, D. (1993). The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(7), pp. 883–899, DOI: 10.1016/0148-9062(93)90041-B. [13] Shah, K.R., Labuz, J.F. (1995). Damage mechanisms in stressed rock from acoustic emission, J. Geophys. Res. Solid Earth, 100(B8), pp. 15527–15539, DOI: 10.1029/95JB01236. [14] Aggelis, D.G., Soulioti, D. V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S., Matikas, T.E. (2011). Acoustic emission characterization of the fracture process in fibre reinforced concrete, Constr. Build. Mater., 25(11), pp. 4126–4131, DOI: 10.1016/j.conbuildmat.2011.04.049. [15] https://www.dexpan.com/collections/dexpan-demolition-agent [16] Aggelis, D.G. (2011). Classification of cracking mode in concrete by acoustic emission parameters, Mech. Res. Commun., 38(3), pp. 153–157, DOI: 10.1016/j.mechrescom.2011.03.007. [17] Aggelis, D.G., Mpalaskas, A.C., Matikas, T.E. (2013). Investigation of different fracture modes in cement-based materials by acoustic emission, Cem. Concr. Res., 48, pp. 1–8, DOI: 10.1016/j.cemconres.2013.02.002. [18] Farhidzadeh, A., Mpalaskas, A.C., Matikas, T.E., Farhidzadeh, H., Aggelis, D.G. (2014). Fracture mode identification in cementitious materials using supervised pattern recognition of acoustic emission features, Constr. Build. Mater., 67(PART B), pp. 129–138, DOI: 10.1016/j.conbuildmat.2014.05.015. [19] Tsangouri, E., Aggelis, D., Matikas, T., Mpalaskas, A. (2015). Acoustic Emission Activity for Characterizing Fracture of Marble under Bending, Appl. Sci., 6(1), pp. 6, DOI: 10.3390/app6010006. [20] Harada T., Idemitsu T., Watanabe A., Takayama S. (1989). The Design Method for the Demolition of Concrete with Expansive Demolition Agents. In: Shah S.P., Swartz S.E. (eds) Fracture of Concrete and Rock. Springer, New York. [21] Shang, J., Zhao, Z., Aliyu, M.M. (2018). Stresses induced by a demolition agent in non-explosive rock fracturing, Int. J. Rock Mech. Min. Sci., 107(December), pp. 172–180, DOI: 10.1016/j.ijrmms.2018.04.049. [22] Agioutantis, Z., Kaklis, K., Mavrigiannakis, S., Verigakis, M., Vallianatos, F., Saltas, V. (2016). Potential of acoustic emissions from three point bending tests as rock failure precursors, Int. J. Min. Sci. Technol., 26(1), pp. 155–160, DOI: 10.1016/j.ijmst.2015.11.024. [23] Kaklis, K., Mavrigiannakis, S., Saltas, V., Vallianatos, F., Agioutantis, Z. (2017). Using acoustic emissions to enhance fracture toughness calculations for CCNBD marble specimens, Frat. Ed Integrita Strutt., 11(40), DOI: 10.3221/IGF-ESIS.40.01. [24] Vallianatos, F., Benson, P., Meredith, P., Sammonds, P. (2012). Experimental evidence of a non-extensive statistical physics behaviour of fracture in triaxially deformed Etna basalt using acoustic emissions, Epl, 97(5), DOI: 10.1209/ 0295-5075/97/58002. [25] Vallianatos, F., Sammonds, P. (2013). Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu mega-earthquakes, Tectonophysics, 590, pp. 52–58, DOI: 10.1016/j.tecto.2013.01.009. [26] Vallianatos, F., Papadakis, G., Michas, G. (2016). Generalized statistical mechanics approaches to earthquakes and tectonics, Proc. R. Soc. A Math. Phys. Eng. Sci., 472(2196), DOI: 10.1098/rspa.2016.0497.

RkJQdWJsaXNoZXIy MjM0NDE=