Issue 50
N. Martini et alii, Frattura ed Integrità Strutturale, 50 (2019) 471-480; DOI: 10.3221/IGF-ESIS.50.39 479 [18] Mikhailik, V., Kraus, H. (2010). Performance of scintillation materials at cryogenic temperatures, Phys. Status. Solidi. B., 247, pp. 1583-1599. [19] Mikhailik, V., Elyashevskyi, Y., Kraus, H., Kim, H., Kapustianyk, V., Panasyuk, M. (2015). Temperature dependence of scintillation properties of SrMoO 4 , Nucl. Instr. and Meth. Phys. Res. A., 792, pp. 1-5. [20] Shahabinejad, H., Feghhi, S., Khorsandi, M. (2014). Structural inspection and troubleshooting analysis of a lab-scale distillation column using gamma scanning technique in comparison with Monte Carlo simulations, Measur., 55, pp. 375-381. [21] Koukou, V., Martini, N., Valais, I., Bakas, A., Kalyvas, N., Lavdas, E., Fountos, G., Kandarakis, I., Michail, C. (2017). Resolution properties of a Calcium Tungstate (CaWO 4 ) screen coupled to a CMOS imaging detector, J. Phys.: Conf. Ser., 931, pp. 012027. [22] Martini, N., Koukou, V., Fountos, G., Valais, I., Bakas, A., Ninos, K., Kandarakis, I., Panayiotakis, G., Michail, C. (2018). Towards the enhancement of medical imaging with non-destructive testing (NDT) CMOS sensors. Evaluation following IEC 62220-1-1:2015 international standard, Procedia Structural Integrity, 10, pp. 326-332. [23] Sotiropoulou, P., Fountos, G., Martini, N., Koukou, V., Michail, C., Kandarakis, I., Nikiforidis, G. (2015). Bone calcium/phosphorus ratio determination using Dual Energy X-ray method, Phys. Med., 31, pp. 307-313. [24] Koukou, V., Martini, N., Michail, C., Sotiropoulou, P., Fountzoula, C., Kalyvas, N., Kandarakis, I., Nikiforidis, G., Fountos, G. (2015). Dual energy method for breast imaging: A simulation study, Comput. Math. Methods Med., 2015, pp. 574238. [25] Sotiropoulou, P., Fountos, G., Martini, N., Koukou, V., Michail, C., Kandarakis, I., Nikiforidis, G. (2016). Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation, Appl. Radiat. Isot., 118, pp. 18-24. [26] Koukou, V., Martini, N., Fountos, G., Michail, C., Sotiropoulou, P., Bakas, A., Kalyvas, N., Kandarakis, I., Speller, R., Nikiforidis, G. (2017). Dual energy subtraction method for breast calcification imaging, Nucl. Instrum. Meth. Phys. Res. A., 848, pp. 31-38. [27] Koukou, V., Martini, N., Fountos, G., Michail, C., Bakas, A., Oikonomou, G., Kandarakis, I., Nikiforidis, G. (2017). Application of a Dual Energy X-ray imaging method on breast specimen, Result. Phys., 7, pp. 1734-1736. [28] Martini, N., Koukou, V., Fountos, G., Michail, C., Bakas, A., Kandarakis, I., Speller, R., Nikiforidis, G. (2017). Char- acterization of breast calcification types using dual energy X-ray method, Phys. Med. Biol., 62, pp. 7741-7764. [29] Valais, I., Kandarakis, I., Nikolopoulos, D., Michail, C., David, S., Loudos, G., Cavouras, D., Panayiotakis, G. (2007). Luminescence properties of (Lu,Y) 2 SiO 5 :Ce and Gd 2 SiO 5 :Ce single crystal scintillators under x-ray excitation, for use in medical imaging systems, ΙΕΕΕ Trans. Nucl. Sci., 54(1), pp. 11-18. [30] Valais, I., Michail, C., David, S., Liaparinos, P., Fountos, G., Paschalis, T., Kandarakis, I., Panayiotakis, G. (2010). Comparative Investigation of Ce 3+ doped scintillators in a wide range of photon energies covering X-ray CT, Nuclear Medicine and Megavoltage Radiation Therapy Portal Imaging applications, ΙΕΕΕ Trans. Nucl. Sci., 57(1), pp. 3-7. [31] Michail, C., David, S., Liaparinos, P., Valais, I., Nikolopoulos, D., Kalivas, N., Toutountzis, A., Sianoudis, I., Cavouras, D., Dimitropoulos, N., Nomicos, C., Kourkoutas, K., Kandarakis, I., Panayiotakis, G. (2007). Evaluation of the imaging performance of LSO powder scintillator for use in x-ray mammography, Nucl. Instrum. Meth. Phys. Res. A., 580, pp. 558-561. [32] Medical Electrical Equipment-Characteristics of Digital X-Ray Imaging Devices, Part 1: Determination of the Detective Quantum Efficiency” IEC, International Electrotechnical Commission, Geneva, Switzerland, 2003, IEC 62220-1. [33] Medical Electrical Equipment-Characteristics of Digital X-Ray Imaging Devices - Part 1-1: Determination of the Detective Quantum Efficiency - Detectors used in radiographic imaging, IEC, International Electrotechnical Com- mission, Geneva, Switzerland, 2015, IEC 62220-1-1. [34] Kandarakis, I., Cavouras, D., Panayiotakis, G., Triantis, D., Nomicos, C. (1997). An experimental method for the de- termination of spatial-frequency-dependent detective quantum efficiency (DQE) of scintillators used in X-ray imaging detectors, Nucl. Instrum. Meth. Phys. Res. A., 399, pp. 335-342. [35] Kandarakis, I., Cavouras, D., Panayiotakis, G., Triantis, D., Nomicos, C. (1998). Europium-activated phosphors for use in X-ray detectors of medical imaging systems, Eur. Radiol., 8, pp. 313-318. [36] Michail, C., Toutountzis, A., David, S., Kalivas, N., Valais, I., Kandarakis, I., Panayiotakis, G. (2009). Imaging per- formance and light emission efficiency of Lu 2 SiO 5 :Ce (LSO:Ce) powder scintillator under x-ray mammographic conditions, Appl Phys B., 95, pp. 131-139. [37] Tombak, M., Gutan, V. (1968). Properties of a CaWO 4 phosphor heated in flowing hydrogen chloride, Zh. Prikl. Spektrosk., 8(5), pp. 796-802. [38] Issler, S., Torardi, C. (1995). Solid state chemistry and luminescence of X - ray phosphors, J. Alloys Compd., 229, pp. 54-65 .
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=