Issue 50

N. Martini et alii, Frattura ed Integrità Strutturale, 50 (2019) 471-480; DOI: 10.3221/IGF-ESIS.50.39 478 C ONCLUSIONS pplications such as, non-destructive testing, medical imaging etc., require efficient detectors, of high resolution. In this study the resolution properties of a non-destructive testing/industrial inspection CMOS sensor, in conjunction with a scintillating material that came to the spotlight once again (CaWO 4 ) was examined in order to further exploit and enhance the imaging capabilities of an integrated detector, incorporating these two modules. Experiments were carried under X-ray radiography imaging conditions, following the IEC 62220-1-1:2015 protocol. Furthermore, the detector quantum gain of the screen and the spectral compatibility was also examined for various optical sensor combinations. MTF values of the CaWO 4 screen/CMOS combination were found high across the spatial frequency range. As a conclusion, the resolution properties of the thin 118.9 μm CaWO 4 screen/CMOS combination are promising for general radiography medical imaging applications. R EFERENCES [1] Kaugars, G. and Fatouros, P. (1982). Clinical comparison of conventional and rare earth screen-film systems for cepha- lometric radiographs, Oral, Surg. Oral. Med. Oral. Pathol., 53(3), pp. 322-325. [2] Derenzo, S., Weber, M., Bourret-Courchesne, E., Klintenberg, M. (2003). The quest for the ideal inorganic scintillator, Nucl. Instr. and Meth. Phys. Res. A., 505, pp. 111-117. [3] Brixner, L. (1987). New X-Ray Phosphors, Mater, Chem. Phys., 16, pp. 253-281. [4] Nikl, M. (2006). Scintillation detectors for x-rays, Meas. Sci. Technol., 17, pp. R37-R54. [5] Michail, C., Valais, I., Fountos, G., Bakas, A., Fountzoula, C., Kalyvas, N., Karabotsos, A., Sianoudis, I., and Kandarakis, I. (2018). Luminescence efficiency of Calcium Tungstate (CaWO 4 ) under X-ray radiation: Comparison with Gd 2 O 2 S:Tb, Measur., 120, pp. 213-220. [6] Cavouras, D., Kandarakis, I., Bakas, A., Triantis, D., Nomicos, C., Panayiotakis, G. (1998). An experimental method to determine the effective luminescence efficiency of scintillator-photodetector combinations used in X-ray medical imaging systems, Br. J. Radiol, 71, pp. 766-772. [7] Cavouras, D., Kandarakis, I., Panayiotakis, G., Kanellopoulos, E., Triantis, D., Nomicos, C. (1998). An investigation of the imaging characteristics of the Y 2 O 2 S:Eu 3+ phosphor for application in X-ray detectors of Digital Mammography, Appl. Radiat. Isot, 49, pp. 931-937. [8] Michail, C.M., Spyropoulou, V. A., Fountos, G. P., Kalyvas, N.I., Valais, I. G., Kandarakis, I.S., Panayiotakis, G.S. (2011). Experimental and Theoretical Evaluation of a High Resolution CMOS Based Detector under X-Ray Imaging Conditions, IEEE Trans. Nucl. Sci, 58(1), pp. 314-322. [9] Michail, C., Valais, I., Seferis, I., Kalyvas, N., David, S., Fountos, G., Kandarakis, I. (2014). Measurement of the Luminescence properties of Gd 2 O 2 S:Pr,Ce,F Powder Scintillators under X-ray radiation, Radiat. Meas., 70, pp. 59-64. [10] Michail, C., Valais, I., Seferis, I., Kalyvas, N., Fountos, G., Kandarakis, I. (2015). Experimental Measurement of a High Resolution CMOS Detector Coupled to CsI Scintillators under X-ray Radiation, Radiat. Meas., 74, pp. 39-46. [11] Michail, C., Valais, I., Martini, N., Koukou, V., Kalyvas, N., Bakas, A., Kandarakis, I., Fountos, G. (2016). Determi- nation of the Detective Quantum Efficiency (DQE) of CMOS/CsI Imaging Detectors following the novel IEC 62220-1-1:2015 International Standard , Radiat. Meas., 94, pp. 8-17. [12] Souza, E., Correa, S., Silva, A., Lopes, R., Oliveira, D. (2008). Methodology for digital radiography simulation using the Monte Carlo code MCNPX for industrial applications, Appl. Radiat. Isot., 66, pp. 587-592. [13] IAEA (2011). Radiation Safety Standard in Industrial Radiography, Specific Safety Guide No. SSg-11. Available at: https://www-pub.iaea.org/books/iaeabooks/8500/Radiation-Safety-in-Industrial-Radiography [14] Kim, K., Kang, S., Kim, W., Cho, H., Park, C., Lee, D., Kim, G., Park, S., Lim, H., Lee, H., Park, J., Jeon, D., Lim, Y., Je, U., Woo, T. (2018). Improvement of radiographic visibility using an image restoration method based on a simple radiographic scattering model for x-ray nondestructive testing, NDT and E Int., 98, pp. 117-122. [15] Moszyski, M., Balcerzyk, M., Kraus, H., Czarnacki, W., Mikhailik, V., Nassalski, A., Solskii, I. (2005). Characterization of CaWO 4 scintillator at room and liquid nitrogen temperatures, Nucl. Instr. and Meth. Phys. Res. A., 553, pp. 578-591. [16] Munster, A., Schonert, S., Willers, M. (2017). Cryogenic detectors for dark matter search and neutrinoless double beta decay, Nucl. Instr. and Meth. Phys. Res. A., 845, pp. 387-393. [17] Zdesenko, Y., Avignone III, F., Brudanin, V., Danevich, F., Nagorny, S., Solsky, I., Tretyak, V. (2005). Scintillation properties and radioactive contamination of CaWO 4 crystal scintillators, Nucl. Instr. and Meth. Phys. Res. A., 538, pp. 657-667. A

RkJQdWJsaXNoZXIy MjM0NDE=