Issue 50
A.G. Lekatou et alii, Frattura ed Integrità Strutturale, 50 (2019) 423-437; DOI: 10.3221/IGF-ESIS.50.36 436 [14] Chen, M.-C., Wang, K. and Xie, L. (2013). Deterioration mechanism of cementitious materials under acid rain attack, Eng. Fail. Anal., 27, pp. 272-285. DOI: 10.1016/j.engfailanal.2012.08.007. [15] Mahadam, P.D. and Mane, A.V. (2013). Effect of simulated acidic rain concentrations on selected materials used in construction, Environ. Sci. Indian J., 8(10), pp. 396-406. [16] Barbhuiya, S. and Kumala, D. (2017). Behaviour of a sustainable concrete in acidic environment, Sustainability, 9(9), pp. 1-13. DOI: 10.3390/su9091556. [17] Okochi, H., Kameda, H., Hasegawa, S., Saito, N., Kubota, K. and Igawa, M. (2000). Deterioration of concrete struc- tures by acid deposition-an assessment of the role of rainwater on deterioration by laboratory and field exposure experi- ments using mortar specimens, Atmos. Environ., 34(18), pp. 2937-2945. DOI: 10.1016/S1352-2310(99)00523-3. [18] Zhang, Y., Fan, Y. and Li, H. (2012). Influence of simulated acid rain corrosion on the uniaxial tensile mechanical properties of concrete, Int. J. Corros., 2012, 7p. DOI: 10.1155/2012/172394. [19] Webster, R.P. and Kukacka, L.E., (1986). Effects of acid deposition on Portland cement concrete, In: Materials de- gradation caused by acid rain, Baboian R., ed., Washington DC, Am. Chem. Soc. Pub., pp. 239-249. DOI: 10.1021/ bk-1986-0318.ch16. [20] Wang, Y., Niu, D. and Song, Zh. (2017). Effect of acid rain erosion on steel fiber reinforced concrete, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 32(1), pp. 121-128. DOI: 10.1007/s11595-017-1569-y. [21] Fan, Y.F., Hu, Z.Q., Zhang, Y.Z. and Liu, J.L. (2010). Deterioration of compressive property of concrete under simulated acid rain environment, Constr. Build. Mater., 24(10), pp. 1975-1983. DOI: 10.1016/j.conbuildmat.2010.04.002. [22] Zhou, C., Zhu, Z., Wang, Z. and Qiu, H. (2018). Deterioration of concrete fracture toughness and elastic modulus under simulated acid-sulfate environment, Constr. Build. Mater., 176, pp. 490-499. DOI: 10.1016/j.conbuildmat.2018.05.049. [23] Fan, Y.F., Hu, Z.Q. and Luan, H.Y. (2012). Deterioration of tensile behavior of concrete exposed to artificial acid rain environment, Int. Multiscale Mech., 5(1), pp. 41-56. DOI: 10.12989/imm.2012.5.1.041. [24] Franco-Luján, V.A., Maldonado-García, M.A., Mendoza-Rangel, J.M. and Montes-García, P. (2019). Chloride-induced reinforcing steel corrosion in ternary concretes containing fly ash and untreated sugarcane bagasse ash, Constr. Build. Mater., 198, pp. 608-618. DOI: 10.1016/j.conbuildmat.2018.12.004.. [25] Chousidis, N., Ioannou, I., Rakanta, E., Koutsodontis, C. and Batis, G. (2016). Effect of fly ash chemical com- position on the reinforcement corrosion, thermal diffusion and strength of blended cement concretes, Constr. Build. Mater., 126, pp. 86-97. DOI: 10.1016/j.conbuildmat.2016.09.024. [26] Ahmaruzzaman, M. (2010). A review on the utilization of fly ash, Prog. Energ. Combust., 36(3), pp. 327-363. DOI: 10.1016/j.pecs.2009.11.003. [27] ACI Committee 116 (2000). ACI 116R-00: Cement and Concrete Terminology, Farmington Hills Michigan, American Concrete Institute. [28] Nnadi, E.O., Asce, M. and Lizarazo-Marriaga, J. (2013). Acid corrosion of plain and reinforced concrete sewage systems, J. Mater. Civ. Eng., 25, pp. 1353-1356. DOI: 10.1061/(ASCE)MT.1943-5533.0000641. [29] Hossain, M.M., Karim, M.R., Hasan, M., Hossain, M.K. and Zain, M.F.M. (2016). Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review, Constr. Build. Mater., 116, pp.128-140. DOI: 10. 1016/j.conbuildmat.2016.04.147. [30] Nie, Q., Zhou, C., Shu, X., He, Q. and Huang, B. (2014). Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate environment in Northwest China, Materials, 7(5), pp. 3772-3785. DOI: 10.3390/ma7053772. [31] Takemoto, K. and Uchikawa H. (1980). Hydration of pozzolanic cements, In: Proc. 7 th Int. Congress on the Chemistry of Cement, Vol. 1, Sub-Theme IV-2, Paris, pp. 1-21. [32] Papadakis, V.G. (2000). Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress, Cem. Concr. Res., 30(2), pp. 291-299. DOI: 10.1016/S0008-8846(99)00249-5. [33] Chousidis, N., Rakanta, E., Ioannou, I. and Batis, G. (2015). Mechanical properties and durability performance of rein- forced concrete containing fly ash, Constr. Build. Mater., 101(1), pp. 810-817. DOI: 10.1016/j.conbuildmat.2015.10.127. [34] Tsouli, S., Lekatou, A.G., Kleftakis, S., Matikas, T.E. and Dalla P.T. (2018). Corrosion behavior of 304L stainless steel concrete reinforcement in acid rain using fly ash as corrosion inhibitor, Procedia Struct. Int., 10, pp. 41-48. DOI: 10. 1016/j.prostr.2018.09.007. [35] Tsouli, S., Lekatou, A.G. and Kleftakis, S. (2018). The effect of fly ash on the corrosion performance of AISI 316L stainless steel reinforced concrete for application to restoration works of ancient monuments, In: Conservation of Monu- ments in the Mediterranean Basin, Natural and Anthropogenic Hazards and Sustainable Preservation, Koui M. and Zezza F., eds., Springer Nature Switzerland AG, pp. 171-178. DOI: 10.1007/978-3-319-78093-1.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=