Issue 50
K. Kaklis et alii, Frattura ed Integrità Strutturale, 50 (2019) 395-406; DOI: 10.3221/IGF-ESIS.50.33 405 (NSRF) - Research Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation. R EFERENCES [1] Kaklis, K.N., Mavrigiannakis, S.P., Agioutantis, Z.G. and Maravelaki-Kalaitzaki, P. (2018). Characterization of pozzolanic lime mortars used as filling material in shaped grooves for restoring member connections in ancient monuments, International Journal of Architectural Heritage, 12(1), pp. 75-90. DOI: 10.1080/15583058.2017. 1377313. [2] Veiga, R.M., Velosa, A. and Magalhaes, A. (2009). Experimental applications of mortars with pozzolanic additions: characterization and performance evaluation, Construction and Building Materials, 23, pp. 318-327. DOI: 10. 1016/j.conbuildmat.2007.12.003. [3] Aggelakopoulou, E., Bakolas, A. and Moropoulou, A. (2011). Properties of lime–metakaolin mortars for the restoration of historic masonries, Applied Clay Science, 53(1), pp. 15-19. DOI: 10.1016/j.clay.2011.04.005. [4] Kourkoulis, S.K., Pasiou, E.D., Triantis, D., Stavrakas and I., Hloupis, G. (2015). Innovative experimental techniques in the service of restoration of stone monuments - Part I: the experimental set up, Procedia Engineering, 109, pp. 268-275. DOI: 10.1016/j.proeng.2015.06.232. [5] Kourkoulis, S.K. and Pasiou, E.D. (2015). Interconnected epistyles of marble monuments under axial loads, International Journal of Architectural Heritage, 9(3), pp. 177-194. DOI: 10.1080/15583058.2012.756079. [6] Benin, A.V., Semenov, A.S., Semenov, S.G., Beliaev, M.O. and Modestov, V.S. (2017). Methods of identification of concrete elastic-plastic-damage models, Magazine of Civil Engineering, 8, pp. 279–297. DOI: 10.18720/MCE. 76.24. [7] Gatelier, N., Pellet, F., Loret, B. (2002). Mechanical damage of an anisotropic porous rock in cyclic triaxial tests, International Journal of Rock Mechanics and Mining Sciences, 39(3), pp. 335-354. DOI: 10.1016/S1365-1609 (02)00029-1. [8] Jia, C., Xu, W., Wang, R., Wang, W., Zhang, J. and Yu, J. (2018). Characterization of the deformation behavior of fine-grained sandstone by triaxial cyclic loading, Construction and Building Materials, 162, pp. 113-123. DOI: 10. 1016/j.conbuildmat.2017.12.001. [9] Neuenschwander, M., Knobloch, M. and Fontana, M. (2016). Suitability of the damage-plasticity modelling concept for concrete at elevated temperatures: Experimental validation with uniaxial cyclic compression tests, Cement and Concrete Research, 79, pp. 57-75. DOI: 10.1016/j.cemconres.2015.07.013 [10] Li, B., Xu, L., Chi, Y., Huang, B. and Li, C. (2017). Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression, Construction and Building Materials, 140, pp. 109-118. DOI: 10.1016/j.conbuildmat.2017.02.094. [11] Kaklis, K., Agioutantis, Z., Mavrigiannakis, S. and Maravelaki-Kalaitzaki, P. (2018). On the experimental investi- gation of pozzolanic lime mortar stress-strain behavior and deformation characteristics when subjected to unload- ing-reloading cycles, Procedia Structural Integrity, 10, pp. 129-134. DOI: 10.1016/j.prostr.2018.09.019. [12] Costigan, A. and Pavia, S. (2010). Influence of mechanical properties of lime mortar on the strength of masonry, 2 nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop, Editor(s): J. Valek, C. Groot and J.J. Hughes, e-ISBN: 978-2-35158-112-4, Publisher: RILEM Publications SARL, pp. 457-466. [13] Gameiro, A., Santos Silva, A., Faria, P., Grilo, J., Branco, T., Veiga, R. and Velosa, A. (2014). Physical and chemical assessment of lime–metakaolin mortars: Influence of binder: aggregate ratio, Cement and Concrete Composites, 45, pp. 264-271. DOI: 10.1016/j.cemconcomp.2013.06.010. [14] Bieniawski, Z.T. and Bernede, M.J. (1979). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials, International Journal of Rock Mechanics and Mining Sciences & Geo- mechanics Abstracts, 16(5), pp. 135-140. DOI: 10.1016/0148-9062(79)90262-6. [15] Vogler, U.W. and Kovari, Κ. (1978). Suggested methods for determining the strength of rock materials in triaxial compression, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(2), pp. 47-51. DOI: 10.1016/0148-9062(78)91677-7. [16] Mogi, K. (2007). Experimental rock mechanics, Geomechanics Research Series 3, Balkema proceedings and monographs in engineering, water and earth sciences, The Netherlands, Taylor & Francis/Balkema. [17] Bahn, B.Y. and Hsu, C.T.T. (1998). Stress-strain behavior of concrete under cyclic loading, ACI Materials Journal, 95(2), pp. 178-193. [18] Chen, W.F. and Han, D.J. (1988). Plasticity for structural engineers, New York, Springer-Verlag. [19] Li, B., Xu, L., Chi, Y., Huang, B. and Li, C. (2017). Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression, Construction and Building Materials, 140, pp. 109-118. DOI: 10.1016/j.conbuildmat.2017.02.094.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=