Issue 50
N. Alexopoulos et alii, Frattura ed Integrità Strutturale, 50 (2019) 342-353; DOI: 10.3221/IGF-ESIS.50.29 352 [2] Davis, J.R. (1999). Corrosion of Aluminum and Aluminum Alloys, ASM International Materials Park, United States. [3] Chen, G.S., Gao, M., Wie, R.P. (1996). Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3. Corrosion, 52, pp. 8-15. DOI: 10.5006/1.3292099. [4] Szklarska–Smialowska, Z. (1999). Pitting corrosion of aluminum. Corros. Sci., 41, pp. 1743-1767. DOI: 10.1016/ S0010-938X (99)00012.-8. [5] Shreir, L.L., Jarman, R.A., Burstein, C.T. (1994). Corrosion: metal/environmental reactions, Oxford: Butterworth & Heinemann Ltd. DOI: 10.1016/C2013-0-04015-7. [6] Strehblow, H.H. (1995). Mechanisms of pitting corrosion, In: Corrosion mechanisms in theory and practice, New York, Marcel Dekker Inc.; pp. 201-238. [7] Birbilis, N., Cavanaugh, M.K., Buchheit, R.G. (2006). Electrochemical behavior and localized corrosion associated with Al 7 Cu 2 Fe particles in aluminum alloy 7075-T651. Corros. Sci., 48, pp. 4202-4215. DOI: 10.1016/j.corsci.2006. 02.007. [8] Boag, A., Taylor, R.J., Muster, T.H., Goodman, N., McCulloch, D., Ryan, C., Rout, B., Jamieson, D., Hughes, A.E. (2010). Stable pit formation on AA2024-T3 in a NaCl environment. Corros. Sci., 52, pp. 90-103. DOI: 10.1016/ j.corsci.2009.08.043. [9] Boag, A., Hughes, A.E., Glenn, A.M., Muster, T.H., McCulloch, D. (2011). Corrosion of AA2024-T3 part I: localised corrosion of isolated IM particles. Corros. Sci., 53, pp.17-26. DOI: 10.1016/j.corsci.2010.09.009. [10] Blanc, C., Lavelle, B., Mankowski, G. (1997). The role of precipitates enriched with copper on the susceptibility to pit- ting corrosion of the 2024 aluminum alloy. Corros. Sci., 39, pp. 495-510. DOI: 10.1016/S0010-938X (97) 86099-4. [11] DeRose, J.A., Suter, J., Bałkowiec, T., Michalski, A., Kurzydlowski, K.J., Schmutz, P. (2012). Localised corrosion initiation and microstructural characterization of an Al2024 alloy with a higher Cu to Mg ratio. Corros. Sci., 55, pp. 313-325. DOI: 10.1016/j.corsci.2011.10.035. [12] Shi, H., Tian, Z., Hu, T. Liu, F. Han, E.H., Taryba, M. Lamaka, S.V. (2014). Simulating corrosion of Al 2 CuMg phase by measuring ionic currents, chloride concentration and pH. Corros. Sci., 88, pp. 178-186. DOI: 10.1016/j.corsci. 2014.07.021. [13] Hughes, A.E., Boag, A., Glenn, A.M., McCulloch, D., Muster, T.H., Ryan, C., Luo, C., Zhou, X., Thompson, G.E. (2011). Corrosion of AA2024-T3 part II: co-operative corrosion. Corros. Sci., 53, pp. 27-39. DOI: 10.1016/ j.corsci.2010.09.030. [14] Buchheit, R.G., Grant, R.P., Hlava, P.F., Mckenzie, B., Zender, G.L. (1997). Local dissolution phenomena associated with S phase (Al 2 CuMg) particles in aluminum alloy2024-T3, J. Electrochem. Soc., 144, pp. 2621-2628. .DOI: 10.1149 /1.1837874. [15] Hashimoto, T., Zhang, X., Zhou, X., Skeldon, P., Haigh, S.J., Thompson, G.E. (2016). Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corros. Sci., 103, pp. 157-164. DOI: 10.1016/j.corsci.2015.11.013. [16] Lyon, K.N., Marrow, T.J., Lyon, S.B. (2015). Influence of milling on the development of stress corrosion cracks in austenitic stainless steel. J. Mater. Process. Technol., 218, pp. 32-37. DOI: 10.1016/j.jmatprotec.2014.11.038. [17] Ishihara, S., Saka, S., Nan, Z.Y., Goshima, T., Sunada, S. (2005). Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law. Fatigue Fract. Eng. Mater. Struct., 29, pp. 472-480. DOI: 10.1111/ j.1460-2695.2006.01018.x. [18] Azofeifa, D.E., Clark, N., Amador, A., Saenz, A. (1997). Determination of hydrogen absorption in Pd coated Al thin films. Thin Solid Films, 300, pp. 295-298. DOI: 10.1016/S0040-6090(96)09493-X. [19] Kamoutsi, H. (2004), “Corrosion-induced hydrogen embrittlement in high-strength aluminum alloys”, PhD thesis, Department of Mechanical and Industrial Engineering, University of Thessaly, Volos. [20] Kamoutsi, H., Haidemenopoulos, G., Bontozoglou, V., Pantelakis, S.G. (2006). Corrosion-induced hydrogen em- brittlement in aluminum alloy 2024, Corros. Sci., 48, pp. 1209-1224. DOI: 10.1016/j.corsci.2005.05.015 [21] Lynch, S.P. (2013). Mechanisms and kinetics of environmentally assisted cracking: current status, issues, and sug- gestions for further work, Metall. Mater. Trans. A, 44, pp. 1209-1229. DOI: 10.1007/s11661-012-1359-2. [22] Liao, M., Bellinger, N.C., Komorowski, J.P. (2003). Modeling the effects of prior exfoliation corrosion on fatigue life of aircraft wing skins. Int. J. Fatigue, 25, pp. 1059-1067. DOI: 10.1016/j.ijfatigue.2003.08.005. [23] Chen, G.S., Wan, K.C., Gao, M., Wei, R.P., Flournoy, T.H. (1996). Transition from pitting to fatigue crack growth- modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy. Mater Sci. Eng. A, 219, pp. 126-132. DOI: 10.1016/S0921-5093(96)10414-7. [24] Sprowls, D.O., Walsh, J.D., Shumaker, M.B. (1972). Simplified exfoliation testing of aluminum alloys, ASTM STP 516. DOI: 10.1520/STP35415S.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=