Issue 50

V. Iasnii et alii, Frattura ed Integrità Strutturale, 50 (2019) 310-318; DOI: 10.3221/IGF-ESIS.50.26 317 R EFERENCES [1] Auricchio, F., Boatti, E., Conti, M. (2015). SMA Biomedical Applications, Shape Mem. Alloy Eng., pp. 307–331. DOI: 10.1016/B978-0-08-099920-3.00011-5. [2] Morgan, N.B. (2004). Medical shape memory alloy applications - The market and its products, Mater. Sci. Eng. A, 378(1- 2 SPEC. ISS.), pp. 16–23. DOI: 10.1016/j.msea.2003.10.326. [3] Ozbulut, O.E., Hurlebaus, S., Desroches, R. (2011). Seismic response control using shape memory alloys: A review, J. Intell. Mater. Syst. Struct., 22(14), pp. 1531–1549. DOI: 10.1177/1045389X11411220. [4] Yasniy, P., Kolisnyk, M., Kononchuk, O., Iasnii, V. (2017). Calculation of constructive parameters of SMA damper, Sci. J. TNTU, 88(4), pp. 7–15. [5] Torra, V., Auguet, C., Carreras, G., Dieng, L., Lovey, F.C., Terriault, P. (2012). The SMA: An Effective Damper in Civil Engineering that Smoothes Oscillations, Mater. Sci. Forum, 706–709(July 2015), pp. 2020–2025. DOI: 10.4028 /www.scientific.net/MSF.706-709.2020. [6] Isalgue, A., Lovey, F.C., Terriault, P., Martorell., Torra, F.R.M., Torra, V. (2006). SMA for Dampers in Civil Engineering, Mater. Trans., 47(3), pp. 682–690. DOI: 10.2320/matertrans.47.682. [7] Menna, C., Auricchio, F., Asprone, D. (2015). Applications of shape memory alloys in structural engineering, Shape Memory Alloy Engineering, Elsevier. [8] Mohd Jani, J., Leary, M., Subic, A., Gibson, M.A. (2014). A review of shape memory alloy research, applications and opportunities, Mater. Des., 56, pp. 1078–1113. DOI: 10.1016/j.matdes.2013.11.084. [9] Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., Wagner, M. (2004). Structural and functional fatigue of NiTi shape memory alloys, Mater. Sci. Eng. A, 378(1-2 SPEC. ISS.), pp. 24–33. DOI: 10.1016/j.msea.2003.10.327. [10] Predki, W., Klönne, M., Knopik, A. (2006). Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure, Mater. Sci. Eng. A, 417(1–2), pp. 182–189. DOI: 10.1016/j.msea.2005.10.037. [11] Miyazaki, S., Imai, T., Igo, Y., Otsuka, K. (1986). Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metall. Trans. A, 17(1), pp. 1115–1120. DOI: 10.1007/BF02644447. [12] Gloanec, A.L., Cerracchio, P., Reynier, B., Van Herpen, A., Riberty, P. (2010). Fatigue crack initiation and propagation of a TiNi shape memory alloy, Scr. Mater., 62(10), pp. 786–789. DOI: 10.1016/j.scriptamat.2010.02.001. [13] Kan, Q., Yu, C., Kang, G., Li, J., Yan, W. (2016). Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy, Mech. Mater., 97, pp. 48–58. DOI: 10.1016/j.mechmat.2016.02.011. [14] Pan, Q., Cho, C. (2008). Damping property of shape memory alloys, Metal, pp. 1–5. [15] Miyazaki, S., Mizukoshi, K., Ueki, T., Sakuma, T., Liu, Y. (1999). Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires, Mater. Sci. Eng. A, 273–275, pp. 658–663. DOI: 10.1016/S0921-5093(99)00344-5. [16] Scirè Mammano, G., Dragoni, E. (2012). Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints, Frat. Ed Integrita Strutt., 23, pp. 25–33. DOI: 10.3221/IGF-ESIS.23.03. [17] Matsui, R., Makino, Y., Tobushi, H., Furuichi, Y., Yoshida, F. (2006). Influence of Strain Ratio on Bending Fatigue Life and Fatigue Crack Growth in TiNi Shape-Memory Alloy Thin Wires, Mater. Trans., 47(3), pp. 759–765. DOI: 10.4028 /www.scientific.net/KEM.340-341.1193. [18] Casciati, F., Casciati, S., Faravelli, L. (2007). Fatigue characterization of a Cu-based shape memory alloy, Proc. Est. Acad. Sci. – Phys. Math., 56(2), pp. 207–217. [19] Kim, Y. (2002). Fatigue Properties of the Ti-Ni Base Shape Memory Alloy Wire, Mater. Trans., 43(7), pp. 1703–1706, DOI: 10.2320/matertrans.43.1703. [20] Kang, G., Song, D. (2015). Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo- mechanical ones, Theor. Appl. Mech. Lett., 5(6), pp. 245–254. DOI: 10.1016/j.taml.2015.11.004. [21] Matsui, R., Tobushi, H., Furuichi, Y., Horikawa, H. (2004). Tensile Deformation and Rotating-Bending Fatigue Properties of a Highelastic Thin Wire, a Superelastic Thin Wire, and a Superelastic Thin Tube of NiTi Alloys, J. Eng. Mater. Technol., 126(4), pp. 384–391. DOI: 10.1115/1.1789952. [22] Moumni, Z., Zaki, W., Maitournam, H. (2009). Cyclic Behavior and Energy Approach to the Fatigue of Shape Memory Alloys, J. Mech. Mater. Struct., 4(2), pp. 395–411. DOI: 10.2140/jomms.2009.4.395. [23] Song, D., Kang, G., Kan, Q., Yu, C., Zhang, C. (2015). Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes, Smart Mater. Struct., 24(8), pp. 085007. DOI: 10.1088/0964-1726/24/8/085007. [24] Iasnii, V., Yasniy, P., Lapusta, Y., Shnitsar, T. (2018). Experimental study of pseudoelastic NiTi alloy under cyclic loading, Sci. J. TNTU, 92(4), pp. 7–12.

RkJQdWJsaXNoZXIy MjM0NDE=