Issue 50

H. Saidi et alii, Frattura ed Integrità Strutturale, 50 (2019) 286-299; DOI: 10.3221/IGF-ESIS.50.24 298 [26] Efraim, E., Eisenberger, M. (2007), Exact vibration analysis of variable thickness thick annular isotropic and FGM plates, J. Sound Vib. 299, pp. 720 – 738. DOI: 10.1016/j.jsv.2006.06.068. [27] Zhao, X., Lee, Y.Y., Liew, K.M. (2009), Free vibration analysis of functionally graded plates using the element-free kp-Ritz method, J. Sound Vib, 319, pp. 918 – 939. DOI: 10.1016/j.jsv.2008.06.025. [28] Reddy, J.N. (2000), Analysis of functionally graded plates, Int. J. Numer. Methods Eng, 47, pp. 663 – 684. DOI: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787 >3.0.CO; 2-8. [29] Pradyumna, S., Bandyopadhyay, J.N. (2008), Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation, J. Sound Vib, 318, pp.176 – 192. DOI: 10.1016/j.jsv.2008.03.056. [30] Jha, D.K., Kant, T., Singh, R.K. (2013b), Free vibration response of functionally graded thick plates with shear and normal deformations effects, Compos. Struct, 96, pp. 799 – 823. DOI: 10.1016/j.compstruct.2012.09.034. [31] Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M. (2013), Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique, Compos. Part B, 44, pp. 657 – 674. DOI: 10.1016/j.compositesb.2012.01.089. [32] Reddy, J.N. (2011), A general nonlinear third-order theory of functionally graded plates, Int. J. Aerosp. Lightweight Struct, 1, pp. 1–21. DOI: 10.3850/S201042861100002X. [33] Talha, M., Singh, B.N. (2010), Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Appl. Math. Model, 34, pp. 3991 – 4011. DOI: 10.1016/j.apm.2010.03.034. [34] Chen, C., Hsu, C., Tzou, G. (2009), Vibration and stability of functionally graded plates based on a higher-order deformation theory, J. Reinf. Plast. Compos, 28, pp. 1215 – 1234. DOI: 10.1177/0731684408088884. [35] Mantari, J., Soares, C.G. (2012), Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates, Compos. Struct, 94(8), pp. 2561 – 2575. DOI: 10.1016/j.compstruct.2012.02.019. [36] Houari, M.S.A., Tounsi, A., Anwar Bég, O. (2013), Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory, International Journal of Mechanical Sciences, 76, pp. 102 – 111. DOI: 10.1016/j.ijmecsci.2013.09.004. [37] Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory, Steel Compos. Struct, 15, pp. 221 – 245. DOI: 10.12989/scs.2013.15.2.221. [38] Matsunaga, H. (2008), Free vibration and stability of functionally graded plates according to a 2D higher-order deformation theory, Compos. Struct, 82, pp. 499 – 512. DOI: 10.1016/j.compstruct.2007.07.006. [39] Tounsi, A., Houari, M.S.A., Benyoucef, S., Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates, Aerospace Science and Technology, 24, pp. 209 – 220. DOI: 10.1016/j.ast.2011.11.009. [40] Saidi, H., Tounsi, A., and Bousahla, A.A. (2016), A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations, Geomechanics and Engineering, An Int'l Journal, 11 (2), pp. 289 – 307. DOI: 10.12989/gae.2016.11.2.289. [41] Bennai, R., Fourn, H, Ait Atmane, H., Tounsi, A. and Bessaim, A. (2018), A Dynamic and wive propagation investigation of FGM plates with porosities using a four variable plate theory, Wind and Structures, 28 (1), pp. 49 – 62. DOI: 10.12989/was.2019.28.1.049. [42] Mahi, A., Adda Bedia, E.A., Tounsi, A. (2015), A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates, Appl. Math. Modelling, 39, pp. 2489 – 2508. DOI: 10.1016/j.apm.2014.10.045. [43] Bounouara, F., Benrahou, K.H., Belkorissat, I., Tounsi, A. (2016), A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation, Steel and Composite Structures, 20(2), pp. 227 – 249. DOI: 10.12989/scs.2016.20.2.227. [44] Abdelbari, S., A., Fekrar, A., Heireche, H., Saidi, H., Tounsi, A., Adda Bedia, E.A. (2016), An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler–Pasternak elastic foundations, Wind and Structures, 22(3), pp. 329 – 348. DOI: 10.12989/was.2016.22.3.329. [45] Ait Atmane, H., Tounsi, A., Bernard, F. (2016), Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations, International Journal of Mechanics and Materials in Design, (In press). DOI: 10.1007/s10999-015-9318-x. [46] Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. (2016), Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory, Structural Engineering and Mechanics, 57(4), pp. 617 – 639. DOI: 10.12989/sem.2016.57.4.617.

RkJQdWJsaXNoZXIy MjM0NDE=