Issue 50
M. Godio et alii, Frattura ed Integrità Strutturale, 50 (2019) 194-208; DOI: 10.3221/IGF-ESIS.50.17 207 walls in buildings with flexible diaphragms, Soil Dyn. Earthq. Eng., 79, pp. 211–222, DOI: 10.1016/j.soildyn.2015.09.013. [6] Penner, O., Elwood, K.J. (2016). Out-of-Plane Dynamic Stability of Unreinforced Masonry Walls in One-Way Bending: Parametric Study and Assessment Guidelines, Earthq. Spectra, 32(3), pp. 1699–1723, DOI: 10.1193/011715EQS011M. [7] Corporation, M.S. (2000). Working Model 2D. [8] Sharif, I., Meisl, C.S., Elwood, K.J. (2007). Assessment of ASCE 41 Height-to-Thickness Ratio Limits for URM Walls, Earthq. Spectra, 23(4), pp. 893–908, DOI: 10.1193/1.2790488. [9] Derakhshan, H., Griffith, M.C., Ingham, J.M. (2015). Out-of-plane seismic response of vertically spanning URM walls connected to flexible diaphragms, Earthq. Eng. Struct. Dyn., DOI: 10.1002/eqe.2671. [10] Tondelli, M., Beyer, K., DeJong, M. (2016). Influence of boundary conditions on the out-of-plane response of brick masonry walls in buildings with RC slabs, Earthq. Eng. Struct. Dyn., 45(8), pp. 1337–1356, DOI: 10.1002/eqe.2710. [11] Beyer, K., Tondelli, M., Petry, S., Peloso, S. (2015). Dynamic testing of a four-storey building with reinforced concrete and unreinforced masonry walls: prediction, test results and data set, Bull. Earthq. Eng., 13(10), pp. 3015–3064, DOI: 10.1007/s10518-015-9752-z. [12] Itasca Consulting Group. (2014). UDEC 6.0. [13] Griffith, M.C., Magenes, G., Melis, G., Picchi, L. (2003). Evaluation of out-of-plane stability of unreinforced masonry walls subjected to seismic excitation, J. Earthq. Eng., 7(1), pp. 141–169, DOI: 10.1080/13632460309350476. [14] Griffith, M.C., Lam, N.T.K., Wilson, J.L., Doherty, K. (2004). Experimental Investigation of Unreinforced Brick Masonry Walls in Flexure, J. Struct. Eng., 130(3), pp. 423–432, DOI: 10.1061/(ASCE)0733-9445(2004)130:3(423). [15] Meisl, C.S., Elwood, K.J., Ventura, C.E. (2007). Shake table tests on the out-of-plane response of unreinforced masonry walls, Can. J. Civ. Eng., 34, pp. 1381–1392, DOI: 10.1139/L07-059. [16] Penner, O., Elwood, K.J. (2016). Out-of-Plane Dynamic Stability of Unreinforced Masonry Walls in One-Way Bending: Shake Table Testing, Earthq. Spectra, 32(3), pp. 1675–1697, DOI: 10.1193/011415EQS009M. [17] Psycharis, I.N. (1990). Dynamic behaviour of rocking two-block assemblies, Earthq. Eng. Struct. Dyn., 19(4), pp. 555– 575, DOI: 10.1002/eqe.4290190407. [18] Beyer, K., Lucca, F. (2016).Effect of static and kinematic boundary conditions on the out-of-plane response of brick masonry walls. In: Modena, C., da Porto, F., Valluzzi, M.R., (Eds.), Proceedings of the 16th International Brick and Block Masonry Conference, Padova, pp. 1439–1446. [19] Erwing, R.D., Johnson, A.W., Kariotis, J.C. (1981). Methodology for mitigation of seismic hazards in existing unreinforced masonry buildings: wall testing, out-of-plane. ABK Topical Report 04, El Segundo, California. [20] Simsir, C., Aschheim, M., Abrams, D. (2004). Out-of-plane dynamic response of unreinforced masonry bearing walls attached to flexible diaphragms, Proc. 13th World Conf. Earthq. Eng.. [21] Avgenakis, E., Psycharis, I.N. (2017). Modeling of Rocking Elastic Flexible Bodies under Static Loading Considering the Nonlinear Stress Distribution at Their Base, J. Struct. Eng., 143(7), pp. 04017051, DOI: 10.1061/(asce)st.1943-541x.0001783. [22] Pitilakis, K., Tsinidis, G., Karafagka, S. (2017). Analysis of the seismic behavior of classical multi-drum and monolithic columns, Bull. Earthq. Eng., 15(12), pp. 5281–5307, DOI: 10.1007/s10518-017-0160-4. [23] Kalliontzis, D., Sritharan, S. (2018). Characterizing dynamic decay of motion of free-standing rocking members, Earthq. Spectra, 34(2), pp. 843–866, DOI: 10.1193/011217EQS013M. [24] de Felice, G. (2011). Out-of-Plane Seismic Capacity of Masonry Depending on Wall Section Morphology, Int. J. Archit. Herit., 5(4–5), pp. 466–482, DOI: 10.1080/15583058.2010.530339. [25] Stefanou, I., Psycharis, I., Georgopoulos, I.O. (2011). Dynamic response of reinforced masonry columns in classical monuments, Constr. Build. Mater., 25(12), pp. 4325–3437, DOI: 10.1016/j.conbuildmat.2010.12.042. [26] DeJong, M.J., Vibert, C. (2012). Seismic response of stone masonry spires: Computational and experimental modeling, Eng. Struct., 40, pp. 566–574, DOI: 10.1016/j.engstruct.2012.03.001. [27] Çaktı, E., Saygılı, Ö., Lemos, J. V., Oliveira, C.S. (2016). Discrete element modeling of a scaled masonry structure and its validation, Eng. Struct., 126, pp. 224–236, DOI: 10.1016/j.engstruct.2016.07.044. [28] Sarhosis, V., Baraldi, D., Lemos, J. V., Milani, G. (2019). Dynamic behaviour of ancient freestanding multi-drum and monolithic columns subjected to horizontal and vertical excitations, Soil Dyn. Earthq. Eng., 120(January), pp. 39–57, DOI: 10.1016/j.soildyn.2019.01.024. [29] Reuland, Y., Lestuzzi, P., Smith, I.F.C. (2019). A model-based data-interpretation framework for post-earthquake building assessment with scarce measurement data, Soil Dyn. Earthq. Eng., 116(October 2018), pp. 253–263, DOI: 10.1016/j.soildyn.2018.10.008.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=