Issue 49

C. Bellini et alii, Frattura ed Integrità Strutturale, 49 (2019) 791-799; DOI: 10.3221/IGF-ESIS.49.70 798 R EFERENCES [1] Tisza, M. and Czinege, I. (2018). Comparative study of the application of steels and aluminium in lightweight production of automotive parts. J. Light Mater. Manuf., 1(4), pp. 1-10. DOI: 10.1016/j.ijlmm.2018.09.001. [2] Hirsch, J. (2014). Recent development in aluminium for automotive applications. T. Nonferr. Metal. Soc., 24(7), pp. 1995-2002. DOI: 10.1016/S1003-6326(14)63305-7. [3] Rong, H.H, Hu, P., Ying, L., Hou, W., Zhang, J. (2019). Thermal forming limit diagram (TFLD) of AA7075 aluminum alloy based on a modified continuum damage model: Experimental and theoretical investigations, Int. J. Mech. Sci., 156, pp. 59-73. DOI: 10.1016/j.ijmecsci.2019.03.027. [4] Giuliano, G. (2012). Influence of the Metal Sheet Parameters on the Results of the Erichsen Test, Appl. Mech. Mater., 217-219, pp. 2444-2447. DOI: 10.4028 /www.scientific.net/AMM.217-219.2444. [5] Li, D. and Ghosh, A. (2003). Tensile deformation behavior of aluminum alloys at warm forming temperatures, Mater. Sci. Eng. A, 352 (1–2), pp. 279-286. DOI: 10.1016/S0921-5093(02)00915-2. [6] Lu, J., Song, Y., Hua, L., Zheng, K., Dai, D. (2018). Thermal deformation behavior and processing maps of 7075 aluminum alloy sheet based on isothermal uniaxial tensile tests, J. Alloy. Compd., 767, pp. 856-869. DOI: 10.1016/j.jallcom.2018.07.173. [7] Wang, H., Luo, Y., Friedman, P., Chen, M., Gao, L. (2012). Warm forming behavior of high strength aluminum alloy AA7075, T. Nonferr. Metal. Soc., 22(1), pp. 1-7. DOI: 10.1016/S1003-6326(11)61131-X. [8] Wang, L., Strangwood, M., Balint, D., Lin, J., Dean, T.A. (2011). Formability and failure mechanisms of AA2024 under hot forming conditions, Mater. Sci. Eng. A, 528(6), pp. 2648-2656. DOI: 10.1016/j.msea.2010.11.084. [9] Rokni, M.R., Zarei-Hanzaki, A., Roostaei, A.A., Abedi, H.R. (2011). An investigation into the hot deformation characteristics of 7075 aluminum alloy, Mater. Des., 32(4), pp. 2339-2344. DOI: 10.1016/j.matdes.2010.12.047. [10] Giuliano, G. and Samani, F. (2016). Comparison between superplastic and non-superplastic grade AA 5083, J. Test. Eval., 44(6), pp. 2114-2119. DOI: 10.1520/JTE20150299. [11] Giuliano, G. (2016). On the constitutive equation of AA2017 aluminium alloy at high temperature, Manuf. Lett., 10, pp. 10-13. DOI: 10.1016/j.mfglet.2016.08.003. [12] Hill, R. (1952). On discontinuous plastic states with special reference to localized necking in thin sheets, J. Mech. Phys. Solids., 1(1), pp. 19-30. DOI: 10.1016/0022-5096(52)90003-3. [13] Swift, H.W. (1952). Plastic instability under plane stress, J. Mech. Phys. Solids., 1(1), pp. 1-18. DOI: 10.1016/0022-5096(52)90002-1. [14] Banabic, D., Lazarescu, L., Paraianu, L., Ciobanu, I., Nicodim, I., Comsa, D. (2013). Development of a new procedure for the experimental determination of the forming limit curves, Cirp Ann. - Manuf. Techn., 62(1), pp. 255- 258. DOI: 10.1016/j.cirp.2013.03.051. [15] Marciniak, Z. (1994). Stability of plastic shells under tension with kinematic boundary condition, Arch. Mech., 17, pp. 577-592. [16] Situ, Q., Jain, M., Metzger, D. (2011). Determination of forming limit diagrams of sheet materials with a hybrid experimental-numerical approach, Int. J. Mech. Sci., 53(4), pp. 707-719. DOI: 10.1016/j.ijmecsci.2011.06.003. [17] Abovyan, T., Kridli, G.T., Friedman, P.A., Ayoub, G. (2015). Formability prediction of aluminum sheet alloys under isothermal forming conditions, J. Manuf. Process., 20, pp. 406-413. DOI: 10.1016/j.jmapro.2014.08.003. [18] Banabic, D. (2010). Sheet Metal Forming Processes Constitutive Modelling and Numerical Simulation, Berlin, Springer. DOI: 10.1007/978-3-540-88113-1. [19] Giuliano, G., Bellini, C., Sorrentino, L., Turchetta, S. (2018). Forming process analysis of an AA6060 aluminum vessel, Fract. Struct. Int., 45, pp. 164-172. DOI: 10.3221/IGF-ESIS.45.14. [20] Nielsen, C.V. and Bay, N. (2018). Review of friction modeling in metal forming processes, J. Mater. Process. Tech., 255, pp. 234-241. DOI: 10.1016/j.jmatprotec.2017.12.023. [21] Yan, W., Han, J., Zheng, W., Wang, G.,Wu, T. (2018). Establishment of friction model and calculation of size factor in micro/meso forming processes, Int. J. Adv. Manuf. Tech., 98 (9-12), pp. 3061-3069. DOI: 10.1007/s00170-018-2441-8. [22] Ma, J., Li, H., Wang, D., Fu, M.W., Tao, Z.J. (2018). Tribological behaviors in titanium sheet and tube forming at elevated temperatures: evaluation and modeling, Int. J. Adv. Manuf. Tech., 97 (1-4), pp. 657-674. DOI: 10.1007/s00170-018-1985-y. [23] Wang, Z.G., Komiyama, S., Yoshikawa, Y., Suzuki, T., Osakada, K. (2015). Evaluation of lubricants without zinc phosphate precoat in multi-stage cold forging, CIRP Ann.-Manuf. Techn., 64 (1), pp. 285-288. DOI: 10.1016/j.cirp.2015.04.130.

RkJQdWJsaXNoZXIy MjM0NDE=