Issue 49
M. L. Puppio et alii, Frattura ed Integrità Strutturale, 49 (2019) 725-738; DOI: 10.3221/IGF-ESIS.49.65 737 [4] Casapulla, C., Giresini, L., Sassu, M., Lourenço, P.B. (2017). Rocking and kinematic approaches of masonry walls: state of the art and recent developments, Buildings, DOI: 10.3390/buildings7030069. [5] Casapulla, C., Argiento, L.U. (2016). The comparative role of friction in local out-of-plane mechanisms of masonry buildings. Pushover analysis and experimental investigation, Eng. Struct., 126, pp. 158–173, DOI: 10.1016/j.engstruct.2016.07.036. [6] Giresini, L. (2016). Energy-based method for identifying vulnerable macro-elements in historic masonry churches, Bull. Earthq. Eng., 14(3), pp. 919–942, DOI: 10.1007/s10518-015-9854-7. [7] Giresini, L., Sassu, M., Butenweg, C., Alecci, V., De Stefano, M. (2017). Vault macro-element with equivalent trusses in global seismic analyses, Earthq. Struct., 12(4), pp. 409–423, DOI: 10.12989/eas.2017.12.4.409. [8] Andreini, M., De Falco, A., Giresini, L., Sassu, M. (2014). Mechanical characterization of masonry walls with chaotic texture: procedures and results of in-situ tests, Int. J. Archit. Herit. Conserv. Anal. Restor., 8(3), pp. 376–407, DOI: 10.1080/15583058.2013.826302. [9] Giresini, L. (2017).Design strategy for the rocking stability of horizontally restrained masonry walls. In: M. Papadrakakis, M.F., (Ed.), COMPDYN 2017 6th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rhodes Island, Greece. [10] Chan, Y. (1996). Study of old masonry retaining walls in Hong Kong, , GEO REPORT 31, Geotechnical Engineering Office, Civil Engineering Department, Hong Kong. [11] Andreini, M., De Falco, A., Giresini, L., Sassu, M. (2013). Collapse of the historic city walls of Pistoia (Italy): Causes and possible interventions, Appl. Mech. Mater., 351–352. [12] Madiai, C., Facciorusso, J., Gargini, E. (2017). Numerical modeling of seismic site effects in a shallow alluvial basin of the Northern Apennines (Italy), Bull. Seismol. Soc. Am., 107(5), pp. 2094–2105, DOI: 10.1785/0120160293. [13] Casapulla, C., Argiento, L.U., Maione, A. (2018). Seismic safety assessment of a masonry building according to Italian Guidelines on Cultural Heritage: simplified mechanical-based approach and pushover analysis, Bull. Earthq. Eng., [14] DOI: 10.1007/s10518-017-0281-9. [15] Sassu, M., Andreini, M., Casapulla, C., De Falco, A. (2013). Archaeological consolidation of UNESCO masonry structures in Oman: The sumhuram citadel of Khor Rori and the Al Balid Fortress, Int. J. Archit. Herit., 7(4), pp. 339– 374, DOI: 10.1080/15583058.2012.665146. [16] Sassu, M., Stochino, F., Mistretta, F. (2017). Assessment method for combine structural and energy retrofitting in masonry buildings, Buildings, 7(71). [17] Szalwinski, C.M. (2017). On critical states, rupture states and interlocking strength of granular materials, Materials (Basel)., 10(8), DOI: 10.3390/ma10080865. [18] Swan, C.C., Seo, Y.K. (1999). Limit state analysis of earthen slopes using dual continuum/fem approaches, Int. J. Numer. Anal. Methods Geomech., 23(12), pp. 1359–1371, DOI: 10.1002/(SICI)1096-9853(199910)23:12<1359::AID- NAG39 >3.0.CO ;2-Y. [19] Amoroso, S., Milana, G., Rollins, K., Comina, C., Minarelli, L., Manuel, M., Monaco, P., Franceschini, M., Anzidei, M., Lusvardi, C., Cantore, L., Carpena, A., Casadei, S., Cinti, F., Civico, R., Cox, B., De Martini, P., Di Giulio, G., Di Naccio, D., Di Stefano, G., Facciorusso, J., Famiani, D., Fiorelli, F., Fontana, D., Foti, S., Madiai, C., Marangoni, V., Marchetti, D., Marchetti, S., Martelli, L., Mariotti, M., Muscolino, E., Pancaldi, D., Pantosti, D., Passeri, F., Pesci, A., Romeo, G., Sapia, V., Smedile, A., Stefani, M., Tarabusi, G., Teza, G., Vassallo, M., Villani, F. (2018). The first Italian blast-induced liquefaction test (Mirabello, Emilia-Romagna, Italy): description of the experiment and preliminary results, Ann. Geophys. Geophys., 60(5), DOI: 10.4401/ag-7415. [20] Li, T., Atamturktur, S. (2014). Fidelity and Robustness of Detailed Micromodeling, Simplified Micromodeling, and Macromodeling Techniques for a Masonry Dome, J. Perform. Constr. Facil., 28(3), pp. 480–490, DOI: 10.1061/(ASCE)CF.1943-5509.0000440. [21] Taddei, F., Reindl, L., Park, J., Butenweg, C., Karadogan, F. (2011). Numerical investigation of AAC wall panels based on the damage plasticity constitutive law, Cem. Wapno, Bet., (SPEC.ISSUE), pp. 86–91. [22] Lewicki, B. (1992). Research problems connected with masonry multileaves external walls, CIB Rep., , pp. 119–119. [23] Fernandez, F. (n.d.). Caratterizzazione del materiale lapideo finalizzata all’individuazione dei requisiti delle malte da adoperare per il ripristino delle strutture murarie. [24] Fernandez, F. (2019).A study of collapse in slopes using MPM and NLA (Numerical Limit Analysis). 2nd International Conference on the Material Point Method for Modelling Soil-Water-Structure Interaction, pp. 323-330. [25] Lourenço, P.B., Rots, J.G., Blaawendraad, J. (1998). Continuum model for masonry: parameter estimation and validation, J. Struct. Eng., 124(6), pp. 642–652.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=