Issue 49

E. Abdelouahed et alii, Frattura ed Integrità Strutturale, 49 (2019) 690-697; DOI: 10.3221/IGF-ESIS.49.62 697 [7] Baker, A. (1999). Bonded composite repair of fatigue-cracked primary aircraft structure, Composite Structures, (47), pp. 431-443. [8] Komonen, J., Penttala, V. (2003). Effects of High Temperature on the Pore Structure and Strength of Plain and Polypropylene Fiber Reinforced Cement Pastes, Fire Technology, (39), pp. 23–34. [9] Chow, W. T., Atlim, S. N. (1997). Composite Patch Repairs of Metal Structures: Adhesive Nonlinearity, Thermal Cycling, and Debonding, AIAA Journal, 35 (9), pp. 1528-1535. [10] Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R. (2012). Laser additive manufacturing of metallic components: materials, processes and mechanisms, International Materials Reviews, 57 (3), pp. 133-164. [11] Köpple, M., Lauterbach, S., Wagner W. (2013). Composite repair of through-wall defects in pipework –Analytical and numerical models with respect to ISO/TS 24817, Compos. Struct, (95), pp. 173 –178. [12] Zarrinzadeh, H., Kabir, M.Z., Deylami, A. (2017). Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading, Thin-Walled Structures, (112), pp. 140–148. [13] Nateche, T., HadjMeliani, M., Shafique, M.A., Khan, Matvienko, Y.G., Merah, N., Pluvinage, G. (2015). Residual harmfulness of a defect after repairing by a composite patch, Engineering Failure Analysis, (48), pp. 166–173. [14] Mhamdia, R., Bachir Bouadjra, B., Serier, B. et al. (2011). Contrainte intensity factor for repaired crack with bonded composite patch under thermo-mechanical loading. J Reinf Plastic Compos, (30), pp. 416–424. [15] Albedah, A., Bachir Bouiadjra, B., Aminallah, L., et al. (2011). Numerical analysis of the effect of thermal residual contraintees on the performances of bonded composite repairs in aircraft structures. Compos, B (4), pp.511–516. [16] Lam, C., Cheng, J., Yam, C. (2011). Finite element study of cracked steel circular tube repaired by FRP patching, Procedia Eng, (14), pp. 1106 –1113. [17] ABAQUS finite element programs. ABAQUS Standard 5.6. Hibbitt. Pawtucket, RI 028: Karlsson and Sorensen, Inc. [18] Madani, K., Touzain, S., Feaugas, X., Cohendouz, S., Ratwani ,M. (2010). Experimental and numerical study of repair techniques for panels with geometrical discontinuities. Computational Materials Science, (48), pp. 83–93.

RkJQdWJsaXNoZXIy MjM0NDE=