Issue 49

L. Restuccia, Frattura ed Integrità Strutturale, 49 (2019) 676-689; DOI: 10.3221/IGF-ESIS.49.61 688 [2] USGS (2013). Cement, statistics and information. U.S. Geological Survey, Reston. [3] Gameiro, F., de Brito, J. and Correia da Silva, D. (2014). Durability performance of structural concrete containing fine aggregates from waste generated by marble quarrying industry, Eng Struct 59, pp. 654–662. DOI: 10.1016/j.engstruct.2013.11.026. [4] Galetakis, M., Piperidi, C., Vasiliou, A., Alevizos, G., Steiakakis, E., Komnitsas K. and Soultana, A. (2016). Experimental investigation of the utilization of quarry dust for the production of microcement-based building elements by self-flowing molding casting, Constr Build Mater 107, pp. 247-254. DOI: 10.1016/j.conbuildmat.2016.01.014. [5] Schankoski, R.A., Pilar, R., Prudêncio Jr., L.R. and Douglas Ferron, R. (2017). Evaluation of fresh cement pastes containing quarry by-product powders, Constr Build Mater 133, pp. 234-242. DOI: 10.1016/j.conbuildmat.2016.12.056. [6] Bilir, T., Gencel, O. and Topcu, I. B. (2015). Properties of mortars with fly ash as fine aggregate, Constr Build Mater 93, pp. 782-789. DOI: 10.1016/j.conbuildmat.2015.05.095. [7] Thomas, J. and Harilal, B. (2015). Properties of cold bonded quarry dust coarse aggregates and its use in concrete, Cem Concr Compos 62, pp. 67-75. DOI: 10.1016/j.cemconcomp.2015.05.005. [8] CEDR (2012). Recycling: Road construction in a post-fossil fuel society, Transnational Road Research Programme Call; [9] Westerholm, M., Lagerblad, B., Silfwerbrand, J. and Forssberg, E. (2008). Influence of fine aggregate characteristics on the rheological properties of mortars, Cem Concr Compos 30, pp. 274-282. DOI: 10.1016/j.cemconcomp.2007.08.008. [10] Katz, A. and Baum, H. (2006). Effect of high levels of fines content on concrete properties, ACI Mater J 103, pp. 474- 482. [11] Dapena, E., Alaejos, P., Lobet, A. and Pérez, D. (2010). Effect of recycled sand content on characteristics of mortars and concretes, J Mater Civil Eng 23, pp. 414–422. DOI: 10.1061/(ASCE)MT.1943-5533.0000183. [12] Braga, M., de Brito, J. and Veiga, R. (2012). Incorporation of fine concrete aggregates in mortars, Constr Build Mater 36, pp. 960-968. DOI: 10.1016/j.conbuildmat.2012.06.031. [13] Zhao, Z., Remond, S., Damidot, D. and Xu, W. (2015). Influence of fine recycled concrete aggregates on the properties of mortars, Constr Build Mater 81, pp. 179-186. DOI: 10.1016/j.conbuildmat.2015.02.037. [14] Lahuerta, J.V. and Monterde, G.J.C. (2012). Estudio teorico y experimental sobre los morteros para muros resistentes de fabrica de ladrilho para la actualizacion de la Norma Basica MV 201-1972; 1 parte: memoria del estudio. Materiales de Construccion 34, pp. 33–41. DOI: 10.3989/mc.1984.v34.i196.936. [15] Le, T., Rémond, S., Le Saout, G. and Garcia-Diaz, E. (2016). Fresh behavior of mortar based on recycled sand – Influence of moisture condition, Constr Build Mater 106, pp. 35-42. DOI: 10.1016/j.conbuildmat.2015.12.071. [16] Li, L., Zhan, B. J., Lu, J. and Sun Poon, C. (2019). Systematic evaluation of the effect of replacing river sand by different [17] particle size ranges of fine recycled concrete aggregates (FRCA) in cement mortars, Constr Build Mater 209, pp. 147– 155. DOI: 10.1016/j.conbuildmat.2019.03.044. [18] Pacheco, J., de Brito, J., Ferreira, J. and Soares, D. (2015). Destructive horizontal load tests of full-scale recycled aggregate concrete structures, ACI Struct. J. 112 (6), pp. 815–826. DOI: 10.14359/51687800. [19] Miranda, L. and Selmo, S. (2006). CDW recycled aggregate renderings: Part I – Analysis of the effect of materials finer than 75  m on mortar properties, Constr Build Mater 20, pp. 615-624. DOI: 10.1016/j.conbuildmat.2005.02.025. [20] Bravo, M., de Brito, J., Evangelista, L. and Pacheco, J. (2017). Superplasticizer’s efficiency on the mechanical properties of recycled aggregates concrete: Influence of recycled aggregates composition and incorporation ratio, Constr Build Mater 153, pp. 129-138. DOI: 10.1016/j.conbuildmat.2017.07.103. [21] Cartuxo, F., de Brito, J., Evangelista, L., Jiménez, J.R. and Ledesma, E.F. (2015). Rheological behaviour of concrete made with fine recycled concrete aggregates – Influence of the superplasticizer, Constr Build Mater 89, pp. 36-47. DOI: 10.1016/j.conbuildmat.2015.03.119. [22] Li, J. and Yang, E-H. (2017). Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines, Cem Concr Compos 78, pp. 33-42. DOI: 10.1016/j.cemconcomp.2016.12.013. [23] Vinay Kumar, B.M., Ananthan, H. and Balaji, K.V.A. (2017). Experimental studies on utilization of coarse and finer fractions of recycled concrete aggregates in self-compacting concrete mixes, Journal of Building Engineering 9, pp. 100–108. DOI: 10.1016/j.jobe.2016.11.013. [24] Ferro, G.A, Spoto, C., Tulliani, J.M. and Restuccia, L. (2015). Mortars made of recycled sand from C&D, Procedia Engineering 109, pp. 240 – 247. DOI: 10.1016/j.proeng.2015.06.224. [25] Restuccia, L., Spoto, C., Ferro, G.A. and Tulliani, J.M. (2016). Recycled Mortars with C&D Waste, Procedia Structural Integrity 2, pp. 2896–2904. DOI: 10.1016/j.prostr.2016.06.362. [26] Bažant, Z.P. and Oh, B.H. (1983). Crack Band Theory for Fracture Concrete, Mater. Struct 16, pp. 155-177. DOI: 10.1007/BF02486267. [27] Jenk, Y. and Shah, S.P. (1985). Two parameter fracture model for concrete, J. Eng. Mech. 111, pp. 1227-1241.

RkJQdWJsaXNoZXIy MjM0NDE=