Issue 49

Y. Saadallah et alii, Frattura ed Integrità Strutturale, 49 (2019) 666-675; DOI: 10.3221/IGF-ESIS.49.60 675 [19] Siviour, C. R., and Jordan, J. L. (2016). High Strain Rate Mechanics of Polymers: A Review, Journal of Dynamic Behavior of Materials, 2, pp. 15-32. [20] Şerban, D. A., Weber, G., Marşavina, L., Silberschmidt, V. V., and Hufenbach, W. (2013). Tensile properties of semi- crystalline thermoplastic polymers: Effects of temperature and strain rates, Polymer Testing, 32, pp. 413-425. [21] Cao, K., Wang, Y., and Wang, Y. (2012). Effects of strain rate and temperature on the tension behavior of polycarbonate, Materials & Design, 38, pp. 53-58. [22] Nakai, K., and Yokoyama, T. (2008). Strain Rate Dependence of Compressive Stress-Strain Loops of Several Polymers, Journal of Solid Mechanics and Materials Engineering, 2, pp. 557-566. [23] Viana, J. (2005). Structural interpretation of the strain-rate, temperature and morphology dependence of the yield stress of injection molded semicrystalline polymers, Polymer, 46, pp. 11773-11785. [24] Lubarda, V. A., Benson, D. J., and Meyers, M. A. (2003). Strain-rate effects in rheological models of inelastic response, International Journal of Plasticity, 19, pp. 1097-1118. [25] Manaia, J.P., Pires, F.A., de Jesus, A.M.P., Wu, S. (2019). Yield behaviour of high-density polyethylene: Experimental and numerical characterization, Engineering Failure Analysis, 97, pp. 331-353. [26] Manaia, J.P., Pires, F.A., de Jesus, A.M.P. (2019). Elastoplastic and fracture behaviour of semi-crystalline polymers under multiaxial stress states, Frattura ed Integrita Strutturale, 13, pp. 82-103 [27] Riande, E. (2000). Polymer viscoelasticity: stress and strain in practice, 55, CRC Press. [28] Ashrafi, H., and Farid, M. (2009). A mathematical boundary integral equation analysis of standard viscoelastic solid polymers, Computational Mathematics and Modeling, 20, pp. 397-415. [29] Lemaitre, J., and Chaboche, J. L. (1994). Mechanics of Solid Materials, Cambridge University Press. [30] Moutee, M., Fortin, Y., and Fafard, M. (2007). A global rheological model of wood cantilever as applied to wood drying, Wood Science and Technology, 41, pp. 209-234. [31] Papanastasiou, T. C., and Boudouvis, A. G. (1997). Flows of viscoplastic materials: Models and computations, Computers & Structures, 64, pp. 677-694. [32] Otto, S., Denier, J.P. (2005). An introduction to programming and numerical methods in MATLAB. Springer Science & Business Media, [33] Schodek, D. L., Ferreira, P., and Ashby, M. F. (2009). Nanomaterials, nanotechnologies and design: an introduction for engineers and architects, Butterworth-Heinemann. [34] Morin, D., Haugou, G., Lauro, F., Bennani, B., and Bourel, B. (2015). Elasto-viscoplasticity Behaviour of a Structural Adhesive Under Compression Loadings at Low, Moderate and High Strain Rates, Journal of Dynamic Behavior of Materials, 1, 124-135. [35] Mulliken, A. D., and Boyce, M. C. (2006). Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates, International Journal of Solids and Structures, 43, pp. 1331-1356. [36] Srivastava, V., Chester, S. A., Ames, N. M., and Anand, L. (2010). A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition, International Journal of Plasticity, 26, pp. 1138-1182. [37] Bauwens - Crowet, C., Bauwens, J., and Homes, G. (1969). Tensile yield - stress behavior of glassy polymers, Journal of Polymer Science Part A - 2: Polymer Physics, 7, pp. 735-742.

RkJQdWJsaXNoZXIy MjM0NDE=