Issue 49

M. Hadj Miloud et alii, Frattura ed Integrità Strutturale, 49 (2019) 630-642; DOI: 10.3221/IGF-ESIS.49.57 642 [14] Guillemer-Neel, C., Feaugas, X. and Clavel, M. (2000). Mechanical behavior and damage kinetics in nodular cast iron: Part I. Damage mechanisms, Metall Mater Trans A, 31, pp. 3063–3074. DOI : 10.1007/s11661-000-0085-3. [15] Zhang, Z.L., Thaulow, C. and Ødegård, J. (2000). A complete Gurson model approach for ductile fracture, Eng Fract Mech, 67, pp. 155–168. DOI: 10.1016/S0013-7944(00)00055-2. [16] Bernauer, G. and Brocks, W. (1999). Numerical, round robin on micro-mechanical models: conclusions of part A (ductile tearing) and first results of part B (cleavage fracture), In: ESIS TC1 and TC8 meeting, Statoil Research Centre, 26 August. [17] Oh, C.K. Kim, Y.J. Baek, J.H. Kim, Y.P. and Kim, W. (2007). A phenomenological model of ductile fracture for API X65 steel. Int J Mech Sci, 49, pp. 1399–1412. DOI: 10.1016/j.ijmecsci.2007.03.008. [18] Pavankumara, T.V. Samala, M.K. et al. (2005). Transferability of fracture parameters from specimens to component level, Int J Press Vessels Pip, 82, pp. 386–399. DOI: 10.1016/j.ijpvp.2004.10.003. [19] Acharyya, S. and Dhar, S. (2008). A complete GTN model for prediction of ductile failure of pipe, J Mater Sci, 43, pp. 1897–1909. DOI: 10.1007/s10853-007-2369-0 . [20] Rakin, M., Cvijović, Z., Grabulov, V. and Miloš, K. (2000). Micromechanism of ductile fracture initiation: void nucleation and growth, Facta Univer Ser: Mechanical Engineering; 1(7), pp. 825–833. [21] Rakin, M., Cvijović, Z., Grabulov, V., Putic, S. and Sedmak, A. (2004). Prediction of ductile fracture initiation using micromechanical analysis, Eng Fract Mech, 71, pp. 813–827. DOI: 10.1016/S0013-7944(03)00013-4. [22] Springmann, M. and Kuna, M. (2005). Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques, Computational Materials Science, 33, pp. 501–509. DOI: 10.1016/j.commatsci.2004.09.010. [23] Djouabi, M. Ati, A. and Manach, P.Y. (2018). Identification strategy influence of elastoplastic behavior law parameters on Gurson–Tvergaard–Needleman damage parameters: Application to DP980 steel, International Journal of Damage Mechanics, 3, 1–28. DOI: 10.1177/1056789518772130. [24] Zhao, P.J., Chen, Z.H. and Dong, C.F. (2016). Experimental and numerical analysis of micromechanical damage for DP600 steel in fine-blanking process, Journal of Materials Processing Technology, 236, pp. 16–25. DOI: 10.1016/j.jmatprotec.2016.05.002. [25] Li, H., Yang, H., Lu, R.D. and Fu, M.W. (2016). Coupled modeling of anisotropy variation and damage evolution for high strength steel tubular materials, International Journal of Mechanical Sciences, 105, pp. 41–57. DOI: 10.1016/j.ijmecsci.2015.10.017. [26] Chen, Y., Zhang, C. and Vare, C. (2017). An extended GTN model for indentation-induced damage, Computational Materials Science, 128, pp. 229–235. DOI: 10.1016/j.commatsci.2016.11.043. [27] Cricrì, G. (2013). A consistent use of the Gurson-Tvergaard-Needleman damage model for the R-curve calculation, Frattura ed Integrita Strutturale, 24, pp. 161-174. DOI: 10.3221/IGF-ESIS.24.17 . [28] Sepe, R., Lamanna, G., Caputo, F. (2016). A robust approach for the determination of Gurson model parameters, Frattura ed Integrita Strutturale, 10 (37), pp. 369-381. DOI: 10.3221/IGF-ESIS.37.48. [29] Abaqus; Version 6.12 (2012). User’s manual, Hibbitt, Karlson & Sorensen Inc. [30] Wilsius, J. (1999). Étude expérimentale et numérique de la déchirure ductile basée sur des approches locales en mécanique de la rupture, PhD Thesis, Université des Sciences et Technologies de Lille, France. [31] Hadj Miloud, M. (2017). Modélisation de la rupture ductile de l’acier 12NiCr6 par le modèle micromécanique de Gurson, PhD Thesis, UST Oran, Alegria. [32] Gavrus, A. (1996). Identification automatique des paramètres rhéologiques par analyse inverse, PhD Thesis, Ecole des mines de Paris. [33] Zidane, I. (2009). Développement d'un banc d'essai de traction biaxiale pour la caractérisation de formabilité et du comportement élastoplastique de tôles métalliques, PhD Thesis, INSA Rennes, France. [34] Diot, S., Guines, D., Gavrus, A. and Ragneau, E. (2009). Minimization of friction influence on the evaluation of rheological parameters from compression tests – application to a forging steel behavior identification, Journal of Engineering Materials and Technology, 131, pp. 1-10. DOI: 10.1115/1.3026543 [35] Zidane, I., Guines, D., Léotoing, L. and Ragneau, E. (2010). Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets, Measurement Science and Technology, 21, 5. DOI: 10.1088/0957-0233/21/5/055701.

RkJQdWJsaXNoZXIy MjM0NDE=