Issue 49
D. E. Belhadri et alii, Frattura ed Integrità Strutturale, 49 (2019) 599-613; DOI: 10.3221/IGF-ESIS.49.55 613 [9] Newman, J.C., J.r. and Raju, I.S. (1983). Stress Intensity Factor Equations for Cracks in Three Dimensional Finite Bodies. Fracture Mechanics: Fourteenth Symposium––Volume I: Theory and Analysis, ASTM STP 791, J. C. Lewis and G. Sines, Eds. American Society for Testing and Materials. pp. I-238 - I-265. [10] A. Saffih, S. Hariri. (2006). Numerical study of elliptical cracks in cylinders with a thickness transition, International Journal of Pressure Vessels and Piping. 83. pp. 35–41. [11] Gosz, M. and Moran, B. (1997). Stress-intensity factors along three-dimensional elliptical crack fronts, Office of Aviation Research Washington, D.C. 20591-DOT/FAA/AR-96/97. [12] Khoramishad, H. and Ayatollahi, M. R. (2009). Finite element analysis of a semi-elliptical external crack in a Buried pipe. Transactions of the Canadian Society for Mechanical Engineering, Vol. 33, No. 3, 2009 [13] Rooke, D.P. & Cartwright, D.J. (1976). Compendium of stress intensity factors. HMSO Ministry of Defence. Procurement Executive. [14] Heliot, J., Labbens, R.C., Pelissier-Tanon, A. (1979). Semi elliptical cracks in a cylinder subjected to stress gradient. Am Soc Test Mater. pp. 341–64. [15] McGowan, J.J., Raymund M. (1979). Stress intensity factor solutions for internal longitudinal semi-elliptical surface flaws in a cylinder under arbitrary loadings. Am Soc Test Mater. pp. 365–80. [16] RSEM. (1997). Rules for in service inspection on nuclear power plant components. AFCEN, Tour Framatome, F92084 Paris La défense Cedex; Edition . [17] Chapuliot, S., Lacire, M.H. (1998). Stress intensity factors for internal circumferential cracks in tubes over a wide range of radius over thickness ratios. Proceedings of the ASME PVP Conference, vol. 365; 1998. pp. 95–106. [18] Chapuliot, S., Lacire, M.H. (1999). Stress intensity factors for external circumferential cracks in tubes over a wide range of radius over thickness ratios. Proceedings of the ASME PVP Conference, vol. 388; 1999. pp. 3–12. [19] Meneghetti, G., Campagnolo, A., Avalle, M., Castagnetti, D., Colussi, M., Corigliano, P., De Agostinis, M., Dragoni, E., Fontanari, V., Frendo, F., Goglio, L., Marannano, G., Marulo, G., Moroni, F., Pantano, A., Rebora, A., Scattina, A., Spaggiari, A., Zuccarello, B. (2018). Rapid evaluation of notch stress intensity factors using the peak stress method: Comparison of commercial finite element codes for a range of mesh patterns, Fatigue Fract. Eng. Mater. Struct., 41(5), Doi: 10.1111/ffe.12751. [20] Campagnolo, A., Meneghetti, G. (2018). Rapid estimation of notch stress intensity factors in 3D large-scale welded structures using the peak stress method, MATEC Web Conf., 165, Doi: 10.1051/matecconf/201816517004. [21] API 5L. Specification for line pipe. APL specification 5L, 42nd ed. USA: The American Petroleum Institute; 2000. [22] Walker, A.C., Williams, K.A.J. (1995). Strain based design of pipelines. In: Proceedings of the ASME 14th international conference on ocean, offshore and arctic engineering, vol. V, Copenhagen, Denmark; 1995. pp. 345–50. [23] Hyer, M.W. (2008). Stress analysis of fiber-reinforced composite materials. New York (USA): McGraw-Hill; 2008. [24] Dassault Systèmes Simulia Corp - Abaqus/CAE 6.14 User's Manual. [25] Dake, Y., Sridhar, I., Zhongmin, X., Kumar, S.B. (2012). Fracture capacity of girth weldedpipelines with 3D surface cracks subjected to biaxial loading conditions. Int JPress Vessels Pip. pp. 92-115. [26] Anderson, T.L. (2005). Fracture mechanics: fundamentals and applications 3rd edition,CRC Press; 2005. [27] Mcmeeking, R.C., Parks, D.M. (1979). On criteria for J-dominance of crack tip fields in large-scale yielding. Philadelphia: ASTM STP 668; 1979. pp. 175e194 [28] Bezzerrouki, M., Albedah, A., Bachir Bouiadjra, B., Ouddad, W., Benyahia, F. (2011). Computation of the stress intensity factor for repaired cracks with bonded composite wrap in pipes under traction effect. Journal of Thermoplastic Composite Materials. DOI: 10.1177/0892705711430428. [29] Madjid Meriem-Benziane , Sabah, A., Wahab, A., Hamou, Z., Benoauda, B., Mohamed, H.M., Guy, P. (2015). Finite element analysis of the integrity of an API X65 pipeline with a longitudinal crack repaired with single- and double- bonded composites. Composites Part B 77 . pp. 431-439
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=