Issue 49
Z. Rachid et alii, Frattura ed Integrità Strutturale, 49 (2019) 586-598; DOI: 10.3221/IGF-ESIS.49.54 597 position 1 develops in a mixed mode between the aperture and plant shear mode, whereas those initiated in position 5, can propagate in mixed mode between the open mode and shear anti plan. A crack with a length can initiate from a cavity located in the first and fifth position of the proximal zone. R EFERENCES [1] Maloney, W. J. Jasty, M. Burke, D. W., O'connor, D. O., Zalenski, E. B., Bragdon, C. and Harris, W. H. (1989). Biomechanical and histologic investigation of cemented total hip arthroplasties. A study of autopsy-retrieved femurs after in vivo cycling. Clinical orthopaedics and related research, (249), pp. 129-140. [2] Bhambri, S. K. and Gilbertson, L. N. (1995). Micromechanisms of fatigue crack initiation and propagation in bone cements. Journal of Biomedical Materials Research, 29(2), pp. 233-237. DOI: 10.1002/jbm.820290214. [3] Jasty, M., Maloney, W. J., Bragdon, C. R., O'connor, D. O., Haire, T. and Harris, W. H. (1991). The initiation of failure in cemented femoral components of hip arthroplasties. The Journal of bone and joint surgery. British volume, 73(4), pp. 551-558. [4] Zant, N. P., Wong, C. K. and Tong, J. (2007). Fatigue failure in the cement mantle of a simplified acetabular replacement model. International journal of fatigue, 29(7), pp. 1245-1252. DOI: 10.1016/j.ijfatigue.2006.10.013 [5] Boulenouar, A., Benouis, A. and Benseddiq, N. (2016). Numerical modelling of crack propagation in cement PMMA: Comparison of different criteria. Materials Research, 19(4), pp. 846-855. DOI: 10.1590/1980-5373-MR-2015-0784. [6] Falkenberg, A., Drummen, P., Morlock, M. M. and Huber, G. (2019). Determination of local micromotion at the stem-neck taper junction of a bi-modular total hip prosthesis design. Medical engineering & physics, 65, pp. 31-38. DOI:10.1016/j.medengphy.2019.01.003. [7] Benouis, A., Zagane, M. S., Boulenouar, A., Serier, B. and Belgherras, M. E. (2018). 3D FE analysis of the behavior of elliptical cracks on orthopedic cement of the total hip prosthesis. Journal of Theoretical and Applied Mechanics, 56. DOI: 10.15632/jtam-pl.56.3.803. [8] Kutzner, K. P., Freitag, T., Bieger, R., Reichel, H., Pfeil, J., Ignatius, A. and Dürselen, L. (2018). Biomechanics of a cemented short stem: Standard vs. line-to-line cementation techniques. A biomechanical in-vitro study involving six osteoporotic pairs of human cadaver femurs. Clinical Biomechanics, 52, pp. 86-94. DOI:10.1016/j.clinbiomech.2018.01.004. [9] Benbarek, S., Bouiadjra, B. A. B., El Mokhtar, B. M., Achour, T. and Serier, B. (2013). Numerical analysis of the crack growth path in the cement mantle of the reconstructed acetabulum. Materials Science and Engineering: C, 33(1), pp. 543-549. DOI: 10.1016/j.msec.2012.09.029. [10] Persson, C., Baleani, M., Guandalini, L. and Viceconti, M. (2006). The effect of gentamicin on the fracture properties of bone cement. Journal of Biomechanics, (39), pp. S591-S592. DOI: 10.1111/j.1460-2695.2007.01109.x. [11] Dalstra, M. and Huiskes, R. (1995). Load transfer across the pelvic bone. Journal of biomechanics, 28(6), 715-724. [12] Achour, T., Tabeti, M. S. H., Bouziane, M. M., Benbarek, S., Bouiadjra, B. B. and Mankour, A. (2010). Finite element analysis of interfacial crack behaviour in cemented total hip arthroplasty. Computational Materials Science, 47(3), pp. 672-677. DOI: 10.1016/j.commatsci.2009.10.007 [13] Sahli, A., Benbarek, S., Wayne, S., Bachir Bouiadjra, B. A. and Serier, B. (2014). 3D crack behavior in the orthopedic cement mantle of a total hip replacement. Applied Bionics and Biomechanics, 11(3), pp. 135-147. DOI: 10.12989/sem.2018.66.1.037. [14] Harrigan, T. P., Kareh, J. A., O'Connor, D. O., Burke, D. W. and Harris, W. H. (1992). A finite element study of the initiation of failure of fixation in cemented femoral total hip components. Journal of Orthopaedic Research, 10(1), pp. 134-144. [15] Sinnett-Jones, P. E., Browne, M., Ludwig, W., Buffiere, J. Y. and Sinclair, I. (2005). Microtomography assessment of failure in acrylic bone cement. Biomaterials, 26(33), pp. 6460-6466. [16] Solidworks Software. Dassault System. [17] Murphy, B. P. and Prendergast, P. J. (2000). On the magnitude and variability of the fatigue strength of acrylic bone cement. International Journal of Fatigue, 22(10), pp. 855-864. [18] Mann, K. A., Gupta, S., Race, A., Miller, M. A., Cleary, R. J. and Ayers, D. C. (2004). Cement microcracks in thin- mantle regions after in vitro fatigue loading. The Journal of arthroplasty, 19(5), pp. 605-612. DOI: 10.1016/j.arth.2003.12.080.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=