Issue 49
R.V Prakash et alii, Frattura ed Integrità Strutturale, 49 (2019) 536-546; DOI: 10.3221/IGF-ESIS.49.50 545 (a) (b) (c) Figure 9 : (a) Cooling response of the tested specimens with impacted surface at back (ISB); (b) the quantified damage in the specimens; (c) The normalized peak temperature during active IRT for the CFRP specimens is given against the corresponding damage volume fraction (ISB HB configuration). R EFERENCES [1] Meola, C., Boccardi, S., Carlomagno, G.M., Boffa, N.D., Monaco, E., Ricci, F., (2015). Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics , Composite Structures, 134, pp. 845– 853. DOI: 10.1016/ j.compstruct.2015.08.119 [2] Katunin, A., Dragan, K., Dziendzikowski, M. (2015). Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques, Composite Structures, 127, pp. 1–9. DOI: 10.1016/ j.compstruct.2015.02.080. [3] Li, Y., Zhang, W., Yang, Z.-w., Zhang, J.-y., Tao, S.-j. (2016). Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography, Infrared Physics & Technology 76, pp. 91–102. DOI: 10.1016/j.infrared.2016.01.019 [4] Harizi, W., Chaki, S., Bourse, G., Ourak, M. (2014). Mechanical damage assessment of Polymer–Matrix Composites using active infrared thermography, Composites: Part B, 66, pp. 204–209. DOI: 10.1016/j.compositesb.2014.05.017.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=