Issue 49
M. J. Adinoyi et alii, Frattura ed Integrità Strutturale, 49 (2019) 487-506; DOI: 10.3221/IGF-ESIS.49.46 505 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties, Mater. Sci. Eng. A, 597, pp. 62–69, DOI: 10.1016/j.msea.2013.12.060. [32] Tchitembo Goma, F.A., Larouche, D., Bois-Brochu, A., Blais, C., Boselli, J., Brochu, M. (2014). Effect of extrusion aspect ratio and test temperatures on fatigue crack growth behavior of a 2099-T83 Al-Li alloy, Int. J. Fatigue, 59, pp. 244–253. [33] Satya Prasad, K., Eswara Prasad, N., Gokhale, A.A. (2014).Microstructure and Precipitate Characteristics of Aluminum- Lithium Alloys. In: Eswara Prasad, N., Gokhale, A.A., Wanhill, R.J.H., (Eds.), Aluminum-Lithium Alloys: Processing, Properties, and Applications 1st ed., Elsevier Inc., pp. 99–137. [34] Sun, Z., Huang, M. (2013). Fatigue crack propagation of new aluminum lithium alloy bonded with titanium alloy strap, Chinese J. Aeronaut., 26(3), pp. 601–605. [35] Li, J.F., Liu, P.L., Chen, Y.L., Zhang, X.H., Zheng, Z.Q. (2015). Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys, Trans. Nonferrous Met. Soc. China (English Ed., 25(7), pp. 2103–2112, DOI: 10.1016/S1003-6326(15)63821-3. [36] Zheng, X., Luo, P., Chu, Z., Xu, J., Wang, F. (2018). Plastic flow behavior and microstructure characteristics of light- weight 2060 Al-Li alloy, Mater. Sci. Eng. A, 736, pp. 465–471, DOI: 10.1016/j.msea.2018.09.010. [37] Eswara Prasad, N., Srivatsan, T.S., Wanhill, R.J.H., Malakondaiah, G., Kutumbarao, V.V. (2014).Fatigue Behavior of Aluminum–Lithium Alloys. In: Eswara Prasad, N., Gokhale, A.A., Wanhill, R.J.H., (Eds.), Aluminum-lithium Alloys 1st ed., Elsevier Inc., pp. 341–379. [38] Branco, R., Costa, J.D., Antunes, F. V. (2012). Low-cycle fatigue behaviour of 34CrNiMo6 high strength steel, Theor. Appl. Fract. Mech., 58(1), pp. 28–34, DOI: 10.1016/j.tafmec.2012.02.004. [39] Mughrabi, H. (2001). Fatigue Life and Cyclic Stress-Strain Behavior, Encycl. Mater., pp. 2917–2931. [40] Stephens, Ralph, I., Fatemi, A., Stephens, Robert, R., Fuchs, Henry, O. (2001). Metal Fatigue in Engineering, 3, John Wiley & Sons. [41] Suresh, S. (1998). Fatigue of Materials, Cambridge, Cambridge University Press. [42] Gao, Z., Zhao, T., Wang, X., Jiang, Y. (2009). Multiaxial Fatigue of 16MnR Steel, J. Press. Vessel Technol., 131(2), pp. 021403, DOI: 10.1115/1.3008041. [43] Szusta, J., Seweryn, A. (2017). Experimental study of the low-cycle fatigue life under multiaxial loading of aluminum alloy EN AW-2024-T3 at elevated temperatures, Int. J. Fatigue, 96, pp. 28–42, DOI: 10.1016/j.ijfatigue.2016.11.009. [44] Borrego, L.P., Abreu, L.M., Costa, J.M., Ferreira, J.M. (2004). Analysis of low cycle fatigue in AlMgSi aluminium alloys, Eng. Fail. Anal., 11(5), pp. 715–725. [45] Metal Handbook: Failure Analysis and Prevention (1986), Ohio, American Society for Metals. [46] De-Feng, M., Guo-Qiu, H., Zheng-Fei, H., Zheng-Yu, Z., Cheng-Shu, C., Wei-Hua, Z. (2008). Crack initiation and propagation of cast A356 aluminum alloy under multi-axial cyclic loadings, Int. J. Fatigue, 30(10–11), pp. 1843–1850. N OMENCLATURE AND ABBREVIATIONS Al aluminum Al-Li aluminum lithium b axial fatigue strength exponent c axial fatigue ductility exponent CNC computer numerical control d gage diameter of specimens E elastic modulus E1 metallographic sample from edge of extrusion direction E2 metallographic sample from midsection between the edge and center of extrusion direction E3 metallographic sample from center of extrusion direction E s residual stiffness Exp experimental Freq frequency GPa gigaPascal K monotonic tensile strength coefficient kN kiloNewton mm millimeter
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=