Issue 49

F.J.P. Moreira et alii, Frattura ed Integrità Strutturale, 49 (2019) 435-449; DOI: 10.3221/IGF-ESIS.49.42 448 [3] Di Bella, G., Borsellino, C., Pollicino, E., Ruisi, V.F. (2010). Experimental and numerical study of composite T-joints for marine application. Int J Adhes Adhes. 30, pp. 347-358. DOI: 10.1016/j.ijadhadh.2010.03.002. [4] Trask, R.S., Hallett, S.R., Helenon, F.M.M., Wisnom, M.R. (2012). Influence of process induced defects on the failure of composite T-joint specimens. Composites Part A: Applied Science and Manufacturing. 43, pp. 748-757. DOI: 10.1016/j.compositesa.2011.12.021. [5] Bianchi, F., Koh, T.M., Zhang, X., Partridge, I.K., Mouritz, A.P. (2012). Finite element modelling of z-pinned composite T-joints. Compos Sci Technol. 73, pp. 48-56. DOI: 10.1016/j.compscitech.2012.09.008. [6] Burns, L.A., Mouritz, A.P., Pook, D., Feih, S. (2012). Bio-inspired design of aerospace composite joints for improved damage tolerance. Compos Struct.94, pp. 995-1004. DOI: 10.1016/j.compstruct.2011.11.005. [7] Yang, T., Zhang, J., Mouritz, A.P., Wang, C.H. (2013). Healing of carbon fibre–epoxy composite T-joints using mendable polymer fibre stitching. Compos: Part B.45, pp. 1499-1507. DOI: 10.1016/j.compositesb.2012.08.022. [8] Duan, K., Hu, X., Mai, Y.-W. (2004). Substrate constraint and adhesive thickness effects on fracture toughness of adhesive joints. J Adhes Sci Technol.18, pp. 39-53. DOI: 10.1163/156856104322746992. [9] Panigrahi, S.K., Pradhan, B. (2007). Three Dimensional Failure Analysis and Damage Propagation Behavior of Adhesively Bonded Single Lap Joints in Laminated FRP Composites. Journal of Reinforced Plastics and Composites.26, pp. 183-201. DOI: 10.1177/0731684407070026. [10] Weißgraeber, P.a.W.B. Crack Initiation at Weak Stress Singularities – Finite Fracture Mechanics Approach: Procedia Materials Science; 2014. [11] da Silva, L.F.M., Campilho, R.D.S.G. Advances in numerical modelling of adhesive joints. Heidelberg: Springer; 2012. [12] Yang, Q.D., Thouless, M.D. (2001). Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int J Fract.110, pp. 175-187. DOI: 10.1023/A:1010869706996. [13] Khoramishad, H., Crocombe, A.D., Katnam, K.B., Ashcroft, I.A. (2010). Predicting fatigue damage in adhesively bonded joints using a cohesive zone model. International Journal of Fatigue 32, pp. 1146-1158. DOI: 10.1016/j.ijfatigue.2009.12.013. [14] Daudeville, L., Ladevèze, P. (1993). A damage mechanics tool for laminate delamination. Compos Struct. 25, pp. 547- 555. DOI: 10.1016/0263-8223(93)90203-3. [15] Voyiadjis, G.Z., Kattan, P.I. Damage Mechanics. New York: Marcell Dekker; 2005. [16] Raghavan, P., Ghosh, S. (2005). A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding. Mechanics of Materials. 37, pp. 955-979. DOI: 10.1016/j.mechmat.2004.10.003. [17] Imanaka, M., Hamano, T., Morimoto, A., Ashino, R., Kimoto, M. (2003). Fatigue damage evaluation of adhesively bonded butt joints with a rubber-modified epoxy adhesive. J Adhes Sci Technol. 17, pp. 981-994. DOI: 10.1163/156856103322112888. [18] Wahab, M.M.A., Ashcroft, I.A., Crocombe, A.D., Shaw, S.J. (2001). Prediction of fatigue thresholds in adhesively bonded joints using damage mechanics and fracture mechanics. J Adhes Sci Technol.15, pp. 763-781. DOI: 10.1163/15685610152540830. [19] Mohammadi, S. Extended finite element method for fracture analysis of structures. New Jersey, USA: Blackwell Publishing; 2008. [20] Moës, N., Dolbow, J., Belytschko, T. (1999). A finite element method for crack growth without remeshing. Int J Numer Meth Eng.46, pp. 131-150. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726 >3.0.CO ;2-J. [21] Mubashar, A., Ashcroft, I.A., Crocombe, A.D. (2014). Modelling damage and failure in adhesive joints using a combined XFEM-cohesive element methodology. J Adhesion.90, pp. 682-697. DOI: 10.1080/00218464.2013.826580. [22] Stuparu, F., Constantinescu, D.M., Apostol, D.A., Sandu, M. (2016). A Combined Cohesive Elements—XFEM Approach for Analyzing Crack Propagation in Bonded Joints. J Adhesion.92, pp. 535-552. DOI: 10.1080/00218464.2015.1115355. [23] Campilho, R.D.S.G., Banea, M.D., Pinto, A.M.G., da Silva, L.F.M., de Jesus, A.M.P. (2011). Strength prediction of single- and double-lap joints by standard and extended finite element modelling. Int J Adhes Adhes.31, pp. 363-372. DOI: 10.1016/j.ijadhadh.2010.09.008. [24] Campilho, R.D.S.G., Banea, M.D., Neto, J.A.B.P., da Silva, L.F.M. (2013). Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int J Adhes Adhes.44, pp. 48-56. DOI: 10.1016/j.ijadhadh.2013.02.006. [25] Faneco, T., Campilho, R., Silva, F., Lopes, R. (2017). Strength and Fracture Characterization of a Novel Polyurethane Adhesive for the Automotive Industry. J Test Eval.45, pp. 398-407. DOI: 10.1520/JTE20150335. [26] Campilho, R.D.S.G., Pinto, A.M.G., Banea, M.D., Silva, R.F., da Silva, L.F.M. (2011). Strength Improvement of Adhesively-Bonded Joints Using a Reverse-Bent Geometry. J Adhes Sci Technol.25, pp. 2351-2368.

RkJQdWJsaXNoZXIy MjM0NDE=