Issue 49

L. Suchý et alii, Frattura ed Integrità Strutturale, 49 (2019) 429-434; DOI: 10.3221/IGF-ESIS.49.41 434 stresses achieved during the joining process. As a result, not only a higher fatigue limit is achieved but also a higher capacity of axial forces in forming I-KIF is reached. Despite the limitations of the cutting I-KIF, some applications with thin-walled hubs require a small radial expansion, which a forming I-KIF cannot perform. In addition, the designing of a hub chamfer angle above φ =15° can lead to less radial stresses due to a better cutting edge. Appropriate geometry parameters can therefore be chosen depending on the requirements of the component connection. A CKNOWLEDGEMENT he authors would like to thank the DFG (German Research Foundation) , which made the research project no. 249500173 possible. R EFERENCES [1] Hildebrand, S. (1980). Feinmechanische Elemente. Berlin: VEB Verlag Technik. [2] Thomas, K. (1969). Die Presspassung mit unterbrochener Fuge“, PhD-Thesis, Technische Universität Hannover. [3] Bader, M. (2009). Das Übertragungsverhalten von Pressverbänden und die daraus abgeleitete Optimierung einer formschlüssigen Welle-Nabe-Verbindung“, PhD-Thesis, Technische Universität Graz, Graz. [4] Lätzer, M. (2016). Joining and transmission behaviour of torsional stressed steel-aluminum knurled interference fits“, PhD-Thesis, Technische Universität Chemnitz, Chemnitz, Germany. [5] Mänz, T., Auslegung von Pressverbindungen mit gerändelter Welle, PhD-Thesis, Technische Universität Clausthal, Clausthal. [6] Suchý, L., Leidich, E., Gerstmann, T. and Awiszus, B. (2018). Influence of Hub Parameters on Joining Forces and Torque Transmission Output of Plastically-Joined Shaft-Hub-Connections with a Knurled Contact Surface, Machines, 6(2). [7] Kleditzsch, S., Awiszus, B., Leidich, E. and Lätzer, M. (2015). Numerical and Analytical Investigation of Steel– Aluminum Knurled Interference Fits: Joining Process and Load Characteristics, Journal of Materials Processing Technology, 219, pp. 286–294. [8] Rennert, R., Kullig, E., Vormwald, M. and Siegele, D. (2012). Analytical Strength Assessment 6.th Edition, 6. Aufl. Forschungskuratorium Maschinenbau (FKM), 2012. [9] Coban, H., Silva, K. M. D., and Harrison, D. K. (2009). Mill-knurling as an alternative to laser welding for automotive drivetrain assembly, CIRP Annals, 58(1), pp. 41–44. [10] Suchý, L., Leidich, E., Hasse, A., Gerstmann, T. and Awiszus, B. (2018). Inner knurled interference fit as a further development of the conventional knurled interference fit, in VDI-Berichte 2337, Stuttgart. [11] Ruffing C. et alii (2015). Fatigue Behavior of Ultrafine-Grained Medium Carbon Steel with Different Carbide Morphologies Processed by High Pressure Torsion, Metals, 5(2), pp. 891–909. [12] Kang, M., Aono, Y. and Noguchi, H. (2007). Effect of pre-strain on and prediction of fatigue limit in carbon steel“, International Journal of Fatigue, 29(9), pp. 1855–1862. [13] ISO 6892-1, Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature,. Geneva: International Organization for Standardization, (2017). [14] DIN 743, Calculation of load capacity of shafts and axles. DIN Deutsches Institut für Normung e. V., (2012). [15] DIN 50100, Load controlled fatigue testing - Execution and evaluation of cyclic tests at constant load amplitudes on metallic specimens and components. (2016). [16] Hück, M. (1983). An improved procedure for the evaluation of staircase step tests (German: Ein verbessertes Verfahren fur die Auswertung von Treppenstufenversuchen)“, Zeitschrift Werkstofftechnik, 14, pp. 406–417. T

RkJQdWJsaXNoZXIy MjM0NDE=