Issue 49
M. Bannikov et alii, Frattura ed Integrità Strutturale, 49 (2019) 383-395; DOI: 10.3221/IGF-ESIS.49.38 395 [14] Oborin, V., Sokovikov, M., Bilalov, D., & Naimark, O. (2016). Multiscale study of morphology of the fracture surface aluminum-magnesium alloy with consecutive dynamic and gigacycle loading, Procedia Structural Integrity, 2, pp. 1063- 1070. DOI: 10.1016/j.prostr.2016.06.136. [15] Froustey, C., Naimark, O., Bannikov, M., Oborin, V. (2010). Microstructure scaling properties and fatigue resistance of pre-strained aluminium alloys (part 1: AlCu alloy), European Journal of Mechanics A/Solids, 29, pp. 1008-1014. DOI: 10.1016/j.euromechsol.2010.07.005. [16] Oborin, V.A., Bayandin, Yu. V., Bilalov, D. A., Sokovikov, M. A., Chudinov, V. V, Naimark, O. B. (2018). Self-similar laws of damage development and evaluation of the reliability of alloys D16T and AMg6 under combined dynamic and gigacycle loading, Phys. Mezomekh, 21(6), pp. 135-145 DOI: 10.1134/S1029959919020048. [17] John H. Cantrell, William T. Yost (2001) Nonlinear ultrasonic characterization of fatigue microstructures, Int. J. of Fatigue, 23, pp.487–490. DOI: 10.1016/S0142-1123(01)00162-1. [18] Kumar, A., Torbet, J.C. Pollock, M.T., Jones, W.J. (2010). In situ characterization of fatigue damage evolution in a cast Al alloy via nonlinear ultrasonic measurements, ActaMaterialia, 58(6), pp. 2143-2154. DOI: 10.1016/j.actamat.2009.11.055 [19] Kumar A. et al. (2011) In situ damage assessment in a cast magnesium alloy during very high cycle fatigue. ScriptaMaterialia, 64(1), pp.65-68. DOI: 10.1016/j.scriptamat.2010.09.008 [20] Nazarov A.A., (2018). Nonequilibrium grain boundaries in bulk nanostructured metals and their recovery under the influences of heating and cyclic deformation. Review, Letters on Materials 8 (3), 2018 pp. 372-381 (in Russian). DOI: 10.22226/2410-3535-2018-3-372-381 [21] W. Li, H. Cui, W. Wen, X. Su, C. C. Engler-Pinto Jr.: (2015). In situ Nonlinear Ultrasonic for Very High Cycle Fatigue Damage Characterization of a Cast Aluminum Alloy. Materials Science and Engineering A, 645, pp. 248-254. DOI: 10.1016/j.msea.2015.08.029. [22] Bilalov, D.A., Bayandin, Yu.V., Naimark, O.B. (2018). Mathematical modeling of failure process of AlMg2.5 alloy during high- and very high cycle fatigue, Computational continuum mechanics. 11(3), pp. 323-334. (In Russian). DOI: 10.7242/1999-6691/2018.11.3.24. [23] Naimark, O.B. (2003) Collective properties of defects ensembles and some nonlinear problems of plasticity and fracture, Physical mesomechanics, 6(4), pp. 39-63. [24] Froustey C., Naimark O.B., Panteleev I.A., Bilalov D.A., Petrova A.N., Lyapunova E.A. (2017) Multiscale structural relaxation and adiabatic shear failure mechanisms, Physical Mesomechanics, 20(1), pp. 31-42. DOI: 10.1134/S1029959917010039. [25] Glushak, B.L., Ignatova, O.N., Pushkov, V.A., Novikov, S.A., Girin, A.S., Sinitsyn, V.A. (2000). Dynamic Deformation of Aluminum Alloy AMg-6 at Normal and Higher Temperatures, Journal of Applied Mechanics and Technical Physics., 41(6), pp. 1083-1086. DOI: 10.1023/A:1026662824249. [26] Frolov, K.V. (2001). Mechanical Engineering. Encyclopedia. Volume II-3: Non-ferrous metals and alloys. Composite metallic materials. Moscow, MechanicalEngineering, 880 p. (In Russian). [27] Yakovleva, T. Yu., Matokhnyuk, L.E. (2004). Prediction of fatigue metal resistance characteristics at different loading frequencies, Strength problems, 4, pp. 145-155. (In Russian).
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=