Issue 49
A.V. Vakhrushev et alii, Frattura ed Integrità Strutturale, 49 (2019) 370-382; DOI: 10.3221/IGF-ESIS.49.37 381 [3] Wang, L., Qi, T., Zhang, Y. (2005). Synthesis, Characterization, and Boron Uptake of Organic-Inorganic Hybrid Mesoporous Materials, Chemistry Letters, 34(2), pp. 144–145. DOI: 10.1246/cl.2005.144. [4] Srinivas, K., Rao, D.K. (2014). Modelling and Computer Simulation of Nanostructured Devices, American Journal of Nanoscience and Nanotechnology, 2(3), pp. 40–44. DOI: 10.11648/j.nano.20140203.12. [5] Han, S., Lee, M.H., Ihm, J. (2002). Dynamical Simulation of Field Emission in Nanostructures, Physical Review B, 65, pp. 085405.1–7. DOI: 10.1103/PhysRevB.65.085405. [6] Grishanov, E.N., Popov, I.Y. (2016). Computer Simulation of Periodic, Nanostructures. Nanosystems: Phisics, Cnemistry, Mathematics, 7(5), pp. 865–868. DOI: 10.17586/2220-8054-2016-7-5-865-868. [7] Vakhrushev, A.V., Fedotov, A.Yu. (2014). Multilevel mathematical modeling of condensation processes in aerosol nanosystems, International Scientific Journal Alternative Energy and Ecology, 8, pp. 8–21. [8] Severyukhin, A.V., Severyukhina, O.Yu., Vakhrushev, A.V., Fedotov, A.Yu. (2016). Investigation of thermophysical properties of silicon nanomaterials by Green-Kubo method. Proceedings of the Institute of Mechanics, Ural Branch of the Russian Academy of Sciences "Problems of Mechanics and Materials Science", pp. 210–223. [9] Turko, B.I., Kapustianyk, V.В., Rudyk, V.P., Rudyk, Y.V. (2016). Thermal Conductivity of Zinc Oxide Micro- and Nanocomposites, Journal of Nano- and Electronic Physics, 8(2), pp. 02004.1–4. DOI: 10.21272/jnep.8(2).02004. [10] Wen, T., Brush, L.N., Krishnan, K.M. (2014). A Generalized Diffusion Model for Growth of Nanoparticles Synthesized by Colloidal Methods, Journal of Colloid and Interface Science, 419, pp. 79–85. DOI: 10.1016/j.jcis.2013.12.018. [11] Lechner, M.D., Mächtle, W. (2011). Characterization of Nanoparticles, Macromolecular Symposia, 145(1), pp. 1–7. DOI: 10.1002/masy.19991450103. [12] Smitha, S., Sango, S.L., Asaithambi, T. (2014–2015). Electrical Conductivity and Band Gap Energy Study of Some Transparent Conducting Metal Oxide and Sulphide Nano Materials, Int. J. ChemTech Res., 7(5), pp 2133–2137. [13] Dirmyer, M.R., Martin, J., Nolas, G.S., Sen, A., Badding, J.V. (2009). Thermal and Electrical Conductivity of Size- Tuned Bismuth Telluride Nanoparticles, Small, 5(8), pp. 933–937. DOI: 10.1002/smll.200801206. [14] Vakhrushev, A.V., Fedotov, A.Yu., Shushkov, A.A., Shushkov, A.V. (2011). Modeling of the Formation of Metal Nanoparticles, Study of Structural, Physical-Mechanical Properties of Nanoparticles and Nanocomposites, News of Tula State University. Natural Sciences, Physical sciences, 2, pp. 241–253. [15] Vakhrushev, A.V., Fedotov, A.Yu., Vakhrushev, A.A., Shushkov, A.A., Shushkov, A.V. (2010). The Study of Mechanisms of Formation of Metal Nanoparticles, Determination of Mechanical and Structural Characteristics of Nano-objects and Composite Materials on its Basis, Chemical Physics and Mesoscopics,12(4), pp. 486–495. [16] Ribarsky, M., Landman, U. (1988). Dynamical Simulation of Stress, Strain and Finite Deformation, Phys. Rev. B, 38(14), pp. 9522–9537. DOI: 10.1103/PhysRevB.38.9522. [17] Lee, S W, Cheng, Y T, Ryu, I, et al. (2014). Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments, Sci China Tech Sci, 57, pp. 652–662. DOI: 10.1007/s11431-014-5502-8. [18] Begue, F., Pujol, P., Ramazashvili, R. (2018). Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators, Journal of Experimental and Theoretical Physics, 153(1), pp. 108–126. DOI: 10.7868/S0044451018010108. [19] Gutkin, M.Yu., Ovid’ko, I.A., Pande, C.S. (2001). Theoretical models of plastic deformation processes in nanocrystalline materials, Rev. Adv. Mater. Sci., 2, pp. 80–102. [20] Shi, X., He, X., Wang, L., Sun, L. (2017). Hierarchical-structure induced adjustable deformation of super carbon nanotubes with radial shrinkage up to 66%, Carbon, 125, pp. 289–298. DOI: 10.1016/j.carbon.2017.09.053. [21] Goldstein, R.V., Morozov, N.F. (2007). Mechanics of deformation and fracture of nanomaterials and nanotechnology, Physical Mesomechanics, 10(5–6), pp. 235–246. DOI: 10.1016/j.physme.2007.11.002. [22] Vakhrushev, A.V, Fedotov, A.Yu. (2008). Probabilistic analysis of modeling the distribution of structural characteristics of composite nanoparticles formed in the gas phase, Computational Continuum Mechanics, 1(3), pp. 34–45. DOI: 10.7242/1999-6691/2008.1.3.25. [23] Vakhrushev, A.V., Fedotov, A.Y., Vakhrushev, A.A., Golubchikov, V.B., Givotkov, A.V. (2011). Multilevel Simulation of the Processes of Nanoaerosol Formation. Part 2. Numerical Investigation of the Processes of Nanoaerosol Formation for Suppression of Fires, International Journal of Nanomechanics Science and Technology, 2(3), pp. 205–216. DOI: 10.1615/NanomechanicsSciTechnolIntJ.v2.i3.20. [24] Vakhrushev, A.V., Fedotov, A.Y., Vakhrushev, A.A. (2011). Modeling of Processes of Composite Nanoparticle Formation by the Molecular Dynamics Technique. Part 1. Structure of Composite Nanoparticles, Journal of Nanomechanics Science and Technology, 2(1), pp. 9–38. DOI: 10.1615/NanomechanicsSciTechnolIntJ.v2.i1.20.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=