Issue 49
A. Guillalet alii, Frattura ed Integrità Strutturale, 49 (2019) 341-349; DOI: 10.3221/IGF-ESIS.49.34 349 index calculated in surface point has a variation that is not similar for all shape and depth ratio configurations. As a conclusion, Consideration of results from deep point reflects the sensitivity of reliability index to crack configuration while calculations in surface point reflects change in dependency of reliability index to the crack shape. Fatigue life calculation shows that variation of crack shape factor can influence reliability index estimation. Initial shallow crack was revealed to have shorter life time then initial semicircular crack differently from results in [11]. Finally, an accurate correlation between a/t and a/c can give more precision in service life estimation of cracked pipeline. R EFERENCES [1] Zhang, K., Ferguson, J. (2017). Crack Shape Development in Fatigue Growth Assessment for Pipelines, presented at the Corrosion 2017, New Orleans, Louisiana, USA, [2] Mahmoud, M. A. (1988).Quantitative prediction of growth patterns of surface fatigue cracks in tension plates, Engineering Fracture Mechanics, 30, pp. 735-746. DOI: 10.1016/0013-7944(88)90134-8. [3] Newman, J. C. and Raju, I. S. (1981). An empirical stress-intensity factor equation for the surface crack, Engineering Fracture Mechanics, 15, pp. 185-192. DOI: 10.1016/0013-7944(81)90116-8. [4] Boukharouba, T., Azouaoui, K., Gilgert, J., Azari, Z., and Pluvinage, G. (2008). Some Insights into the Fatigue Crack Propagation in Tubes Under Internal Pressure—Proposition of Predicting Models, in Safety, Reliability and Risks Associated with Water, Oil and Gas Pipelines, ed: Springer, p.^pp. 183-204. DOI: 10.1007/978-1-4020-6526-2. [5] Zhu, L. and Tao, J. (2016). Comparison of Stress Intensity Factors of Part Surface Flaws at Stress Concentration in Plate and Pipe Between FE Analysis and Weight Function Approach, p. V01AT01A010. DOI: 10.1115/pvp2016-63262. [6] el Amine, M., Seghier, B., Bettayeb, M., Bouali, E. and Gaceb, M. (2017). Probabilistic approach evaluates reliability of pipelines with corrosion defects. [7] el Amine, M., Seghier, B., Keshtegar, B. and Elahmoune, B. (2018). Reliability analysis of low, mid and high-grade strength corroded pipes based on plastic flow theory using adaptive nonlinear conjugate map, Engineering Failure Analysis, 90, pp. 245-261. DOI: 10.1016/j.engfailanal.2018.03.029. [8] el Amine, M., Seghier, Keshtegar, B., Correia, J. A., Lesiuk, G. and De Jesus, A. M. (2019). Reliability analysis based on hybrid algorithm of M5 model tree and Monte Carlo simulation for corroded pipelines: Case of study X60 Steel grade pipes, Engineering Failure Analysis, 97, pp. 793-803. DOI: 10.1016/j.engfailanal.2019.01.061. [9] Kocańda, D. and Jasztal, M. (2012). Probabilistic predicting the fatigue crack growth under variable amplitude loading, International Journal of Fatigue, 39, pp. 68-74. DOI: 10.1016/j.ijfatigue.2011.03.011. [10] Bettayeba, M., Bouali, E., Abdelbaki, N. and Gaceb, M. (2012). Establishment of a database and a classification of the defects in the metal of pipes according to their severity, Procedia Engineering, 42, pp. 607-615. DOI: 10.1016/j.proeng.2012.07.453. [11] Leander, J. and Al-Emrani, M. (2016). Reliability-based fatigue assessment of steel bridges using LEFM–A sensitivity analysis, International Journal of Fatigue, 93, pp. 82-91. DOI: 10.1016/j.ijfatigue.2016.08.011. [12] Kirkemo, F. (1988). Applications of probabilistic fracture mechanics to offshore structures, Applied Mechanics Reviews, 41, pp. 61-84. DOI: 10.1115/1.3151882. [13] el Amine, M., Seghier, B., Bettayeb, M., Correia, J., De Jesus, A. and Calçada, R. (2018). Structural reliability of corroded pipeline using the so-called Separable Monte Carlo method, The Journal of Strain Analysis for Engineering Design, 53(8), pp. 730-737. DOI: 10.1177/0309324718782632. [14] Keshtegar, B., el Amine, M., Seghier, B., (2018). Modified response surface method basis harmony search to predict the burst pressure of corroded pipelines, Engineering Failure Analysis, 89, pp. 177-199. DOI: 10.1016/j.engfailanal.2018.02.016. [15] Abdelkhalak El, H., ChangWu, H. and Bouchaïb, R. (2017). Overview of Structural Reliability Analysis Methods Part II Sampling Methods, Incertitudes et fiabilité des systèmes multiphysiques, 1. DOI: 10.21494/iste.op.2017.0116. [16] Guillal, A., Abdelbaki, N., Gaceb, M. and Bettayeb, M. (2018). Effects of Martensite-Austenite Constituents on Mechanical Properties of Heat Affected Zone in High Strength Pipeline Steels-Review, Chemical engineering transactions, 70, pp. 583-588. DOI: 10.3303/CET1870098. [17] Briottet, L., Batisse, R., de Dinechin, G., Langlois, P. and Thiers, L. (2012). Recommendations on X80 steel for the design of hydrogen gas transmission pipelines, International Journal of Hydrogen Energy, 37, pp. 9423-9430. DOI: 10.1016/j.ijhydene.2012.02.009. [18] JCSS, Probabilistic model code - Part 3: Resistance models, (2011).
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=