Issue 49

A. Kostina et alii, Frattura ed Integrità Strutturale, 49 (2019) 302-313; DOI: 10.3221/IGF-ESIS.49.30 306        (1 ) ' p r dn c n c d , (17) where p c is the pore compressibility; r c is the rock compressibility;      ' m B p ;           / 3 m xx yy zz ;  xx ,  yy ,  zz are the diagonal stress tensor components. This model can be applied in case of the high confining pressure when the effect of shear dilation is small. The second model [11] uses exponential dependence of volumetric strain on porosity:        0 1 (1 )Exp vol n n , (18) where 0 n is the initial porosity;  vol is the volumetric strain. This model can be applied to the cases when the prevailing mechanism of deformation is the increase in volumetric strains. The following boundary and initial conditions were used to close the developed system of equations for SAGD simulation:     0 0 p t p , (19)     0 0 T t T , (20)     0 0 w w S t S , (21)     0 0 s S t , (22)   1 w rw S S , (23)     1 1 s rw ro S S S , (24)   1 b p p , (25)   2 w p p , (26)   1 b T T , (27)     2 ' 0 n q , (28)             1 s s s s n v n v , (29)             1 w w w w n v n v , (30)    3 4 , 0 x u , (31)    5 6 , 0 y u , (32)

RkJQdWJsaXNoZXIy MjM0NDE=