Issue 49

O. Naimark, Frattura ed Integrità Strutturale, 49 (2019) 272-281; DOI: 10.3221/IGF-ESIS.49.27 280 A CKNOWLEDGEMENTS uthor thanks Prof. Valery Matveyenko for the proposal to present the paper in the issue. Research was supported by the Russian Foundation of Basic Research (project n. 17-01-00687a). R EFERENCES [1] Taylor, D. (2008). The theory of critical distances, Engng, Fract. Mech., 75, pp. 1696-1705. [2] Susmel, L., Taylor, D. (2008). On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features, Engng. Fract. Mech.,75, pp. 4410–4421. [3] Novozhilov, V.V. (1969). On a necessary and sufficient criterion for brittle strength, Prik. Mat. Mek., 33, pp.201– 210. [4] Whitney, J.M, Nuismer, R.J. (1974). Stress fracture criteria for laminated composites containing stress concentrations, J, Compos. Mater. 8, pp. 253–265. [5] Taylor, D. (2004). Predicting the fracture strength of ceramic materials using the theory of critical distances, Engng. Fract. Mech., 71, pp. 2407–2416. [6] Taylor, D, Wang, G. (2000). The validation of some methods of notch fatigue analysis. Fatigue Fract. Engng. Mater. Struct., 23, pp.387–94. [7] El Haddad, M.H., Topper, T.H., Smith, K.N. (1979). Prediction of non propagating cracks. Engng. Fract. Mech., 11, pp.573–84. Susmel, L. (2008). The theory of critical distances: a review of its applications in fatigue. Engng. Fract. Mech., 75, pp. 1706-1724. [8] Taylor, D., Cornetti, P., Pugno, N. (2005). The fracture mechanics of finite crack extension. Engng. Fract. Mech., 72, pp. 1021–38. [9] Taylor, D, Cornetti, P. (2005). Finite fracture mechanics and the theory of critical distances. In: Aliabadi M.H., editor. Advances in Fracture and Damage Mechanics IV. EC, Eastleigh UK, pp. 565–70. [10] Hashin, Z. (1996). Finite thermoelastic fracture criterion with application to laminate cracking analysis. J. Mech. Phys. Solids, 44. pp. 1129–45. [11] Leguillon, D. (2002). Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids, 21, pp.61– 72. [12] Cornetti, P., Pugno, N, Carpinteri A., Taylor D. (2006). Finite fracture mechanics: a coupled stress and energy criterion. Engng Fract Mech., 73, pp. 2021–2033. [13] Taylor, D., Bologna, P., Bel Knani, K. (2000). Prediction of fatigue failure location on a component using a critical distance method. Int. J. Fatigue, 22, pp. 735–742. [14] Griffith, A.A. (1921) The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London, Ser. A. 221, pp. 163-198. [15] Irwin, G.R., (1957). Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, pp. 361-364. [16] Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 7, pp. 55 -129. [17] Fraenkel, Ya..I. (1952). Theory of reversible and non-reversible cracks in solid. Journal of Technical Physics, 22, pp. 1857-1866. [18] Naimark, O.B. (2000). Collective behavior of cracks and defects (plenary lecture) In : D Miannay, P.Costa, D. Francois, A. Pineau, eds. Advances in Mechanical Behavior, Plasticity and Damage. Elsevier, 1, pp.15-28. [19] Naimark, O.B. (2004). Defect Induced Transitions as Mechanisms of Plasticity and Failure (plenary lecture). In: G. Capriz and P. Mariano, eds. Advances in Multifield Theories of Continua with Substructure, Birkhäuser, Boston, pp.75-114. [20] Beljaev, V.V., Naimark, O.B. (1990). Kinetics of multi-hotspot failure under shock wave loading Sov. Phys. Doklady, 312, pp.289-293. [21] Bellendir, E.N., Beljaev, V.V., Naimark, O.B. (1989). Kinetics of multi-hotspot failure in the spall conditions. JETPh Letters, 15, pp. 90-93. A

RkJQdWJsaXNoZXIy MjM0NDE=