Issue 49
A. Baryakh et alii, Frattura ed Integrità Strutturale, 49 (2019) 257-266; DOI: 10.3221/IGF-ESIS.49.25 260 1 0 1 1 0 0 0 2 C E . Based on the constructed relations for stresses (5) and strains (6), the left part of Eqn. (1) determining the virtual work of strains can be represented as follows: ( , ) ( , T V x y x y dV 1 1 0 0 1 1 ( ) ( ) ( ) ( ) T T T T c c c c k k k k m m m m k m V p R r y t x C t x r y dV R p 1 1 0 0 ( ) ( ) ( ) ( ) T T T T c c a a k k k k m m m m V p R r y t x C t x r y dV R p 1 1 0 0 ( ) ( ) ( ) ( ) T T T T a a a a k k k k m m m m V p R r y t x C t x r y dV R p 1 1 0 0 ( ) ( ) ( ) ( ) T T T T a a c c k k k k m m m m V p R r y t x C t x r y dV R p (7) If in Eqn. (1): * * 1 1 ( ) ( ) c c a a k k k k k k T t x t x where * cos 0 0 0 0 sin 0 0 0 0 cos 0 0 0 0 sin k k c k k k x x t x x , * sin 0 0 0 0 cos 0 0 0 0 sin 0 0 0 0 cos k k a k k k x x t x x then its right-hand part that determines the external virtual work is given as: * * 1 ( ) ( ) ( ) ( ) T T T T T c c a a k k k k k S S S T U dS p t x U x dS p t x U x dS (8) Substituting of (7), (8) into variational Eqn. (1), makes it possible to use the standard procedures of the finite element method: integrating for the relevant areas and boundaries of a layer; constructing the local compliance matrices; proceeding to global coordinates; combining the generated matrices and, finally, forming the system of independent algebraic equations for the coefficients of the force vector decomposition at the boundary of each layer: k k k S p F (9) where k S is the global compliance matrix, which has a band structure, k F is the k -th harmonic of a given displacement vector along the boundaries of the layers.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=