Issue 49

Yu. Bayandin et alii, Frattura ed Integrità Strutturale, 49 (2019) 243-256; DOI: 10.3221/IGF-ESIS.49.24 255 [6] Merzhievskii, L.A., Paletsky, A.V. (2001). Calculations for diagrams of dynamic deformation of metals and alloys, Phys Mesomech., 4(3), pp. 85-96. [7] Preston, D., Tonks D. (2003). Model of plastic deformation for extreme loading conditions, J App Phys., 93(1), pp. 211-220. DOI: 10.1063/1.1524706 [8] Follansbee PS, Kocks UF. (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variables, Acta Metall., 36(1), pp. 81-93. DOI: 10.1016/0001-6160(88)90030-2 . [9] Makarov, P.V. (2004). On the hierarchical nature of deformation and fracture of solids and media, Phys. Mesomech., 7(3-4), pp. 21-29. [10] Kanel, G.I., Razorenov, S.V., Fortov, V.E. (2004). Shock-wave phenomena and the properties of condensed matter, Springer, New York. [11] Bayandin, Yu.V., Naimark, O.B., Uvarov, S.V. (2010). Numerical simulation of mesodefect induced spall failure under shock wave loading of metals, Computational continuous media mechanics, 3(1), pp. 13-23 (in Russian). DOI: 10.7242/1999-6691/2010.3.1.2. [12] Petrov, Y.V., Smirnov, V.I. (2010). Interrelation between the threshold characteristics of erosion and spall fracture, Tech. phys., 55(2), pp. 230-235. DOI: 10.1134/S1063784210020118. [13] Saveleva, N.V., Bayandin, Yu.V., Naimark, O.B. (2012). Modeling of deformation and failure of metals in plate impact test, Computational continuum media mechanics, 5(3), pp. 300-307 (in Russian). DOI: 10.7242/1999-6691/2012.5.3.35. [14] Petrov, Yu.V., Gruzdkov, A.A., Bratov, V.A. (2012) Structural-temporal theory of fracture as a multiscale process, Phys. Mesomech., 15(3-4), pp. 232-237. DOI: 10.1134/S1029959912020117. [15] Savinykh, A.S., Razorenov, S.V., Kanel, G.I., Rumyantsev, V.I. (2013). Evolution of shock waves in sic ceramic, Tech. phys., 58(7), pp. 973-977. DOI: 10.1134/S1063784213070207. [16] Bayandin, Yu.V., Saveleva, N.V., Savinykh, A.S., Naimark, O.B. (2013). Numerical simulation of shock wave loading of metals and ceramic, Physics of extreme states of matter, pp. 64-67. [17] Merzhievskii, L.A., Tyagel’skii, A.V. (1994). Modeling of dynamic compression of porous iron, Combustion, Explosion and Shock Waves, 30(4), pp. 522-530. DOI: 10.1007/BF00790160. [18] Makarov, P.V. (2008). Mathematical theory of evolution of loaded solids and media, Phys. Mesomech., 11(5-6), pp. 213-227. DOI: 10.1016/j.physme.2008.11.002. [19] Malygin, G.A., Ogarkov, S.L., Andriyash, A.V. (2013). On the Power-Law Pressure Dependence of the Plastic Strain Rate of Crystals Under Intense Shock Wave Loading, Physics of the Solid State, 55(4), pp. 780-786. DOI: 10.1134/S1063783413040197. [20] Malygin, G.A., Ogarkov, S.L., Andriyash, A.V. (2013). Two-Wave Structure of Plastic Relaxation Waves in Crystals Under Intense Shock Loading, Physics of the Solid State, 55(11), pp. 2280-2288. DOI: 10.1134/S1063783413110152. [21] Malygin, G.A., Ogarkov, S.L., Andriyash, A.V. (2014). Dislocation Structure of Plastic Relaxation Waves in Polycrystals and Alloys Under Intense Shock Wave Loading, Physics of the Solid State, 56(11), pp. 2239-2246. DOI: 10.1134/S1063783414110183. [22] Bayandin, Yu.V., Saveleva, N.V., Savinykh, A.S., Naimark, O.B. (2014). Numerical simulation of multiscale damage- failure transition and shock wave propagation in metals and ceramics, Journal of Physics: Conference Series, 500, p. 152001. DOI: 10.1088/1742-6596/500/15/152001. [23] Kanel, G.I., Savinykh, A.S., Garkushin, G.V., Razorenov, S.V. (2015). Dynamic strength of tin and lead melts, Journal of Experimental and Theoretical Physics Letters (JETP Letters), 102(8), pp. 548-551. DOI: 10.1134/S0021364015200059. [24] Zaretsky, E.B., Kanel, G.I. (2014). Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures. Non-monotonous decay of the elastic wave in vanadium, J. Appl. Phys., 115(24), pp. 243502. DOI: 10.1063/1.4885047. [25] Saveleva, N.V., Bayandin, Yu.V., Savinykh, A.S., Garkushin, G.V., Lyapunova, E.A., Razorenov, S.V., Naimark, O.B. (2015). Peculiarities of the elastic-plastic transition and failure in polycrystalline vanadium under shock-wave loading conditions, Tech. Phys. Lett., 41(6), pp. 579-582. DOI: 10.1134/S1063785015060292 [26] Kanel, G.I., Garkushin, G.V., Razorenov, S.V. (2016). Temperature-Rate Dependences of the Flow Stress and the Resistance to Fracture of a VT6 Titanium Alloy under Shock Loading at a Temperature of 20 and 600 ○ C, Tech. Phys., 61(8), pp. 1229-1236. DOI: 10.1134/S1063784216080132. [27] Kanel, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., Fortov, V.E. (2017). Unusual plasticity and strength of metals at ultra-short load durations, Physics-Uspekhi, 60(5), pp. 490-508. DOI: 10.3367/UFNe.2016.12.038004.

RkJQdWJsaXNoZXIy MjM0NDE=