Issue 48

C. Bellini et alii, Frattura ed Integrità Strutturale, 48 (2019) 740-747; DOI: 10.3221/IGF-ESIS.48.67 747 [2] Katiforis, N., Papadimitriou, G. (1996). Influence of copper, cadmium and tin additions in the galvanizing bath on the structure, thickness and cracking behaviour of the galvanized coatings, Surf. Coat. Tech., 78, pp. 185-195. DOI: 10.1016/0257-8972(94)02408-1. [3] Jintang, L., Chunshan, C., Gang, K., Qiaoyu, X., Jinhong, C. (2006). Influence of silicon on the α-Fe/Г interface of hot dip galvanized steels, Surf. Coat. Tech., 200, pp. 5277-5281. DOI: 10.1016/j.surfcoat.2005.06.017. [4] Marder, A.R. (2000). A Review of the Metallurgy of Zinc Coated Steel, Prog. Mater. Sci., 45, pp. 191-271. DOI: 10.1016/S0079-6425(98)00006-1. [5] Yoon, H.G., AHN, G.J., Kim, S.J (2009). Aerodynamic investigation about the cause of check-mark stain on the galvanized steel surface, ISIJ Int., 49, pp. 1755-1761. DOI: 10.2355/isijinternational.49.1755. [6] Singh, D.D.N. and Ghosh, R. (2008). Molybdenum–phosphorus compounds based passivator to control corrosion of hot dip galvanized coated rebars exposed in simulated concrete pore solution, Surf. Coat. Tech., 202, pp. 4687-4701. DOI: 10.1016/j.surfcoat.2008.03.038. [7] Tzimas, E. and Papadimitrou, G. (2001). Cracking mechanisms in high temperature hot-dip galvanized coatings, Surf. Coat. Tech., 145, pp. 176-188. DOI: 10.1016/S0257-8972(01)01323-8. [8] Shibli, S.M.A. and Manu, R. (2006). Development of zinc oxide-rich inner layers in hot-dip zinc coating for barrier protection, Surf. Coat. Tech., 201, pp. 2358-2363. DOI: 10.1016/j.surfcoat.2006.04.012 [9] Balloy, D., Dauphin, J.Y., Tissier, J.C. (2007). Study of the comportment of fatty acids and mineral oils on the surface of steel pieces during galvanization, Surf. Coat. Tech., 202, pp 479-485. DOI: 10.1016/j.surfcoat.2007.06.021. [10] Vagge, S.T. and Raja, V.S. (2009). Influence of strontium on electrochemical corrosion behavior of hot-dip galvanized coating, Surf. Coat. Tech., 203, pp. 3092-3098. DOI: 10.1016/j.surfcoat.2009.03.026. [11] Yuan, M.R., Lu, J.T., Kong, G. (2010). Effect of SiO2:Na2O molar ratio of sodium silicate on the corrosion resistance of silicate conversion coatings, Surf. Coat. Tech., 204, pp 1229-1235. DOI: 10.1016/j.surfcoat.2009.10.024. [12] Bexell, U. and Grehlk, T.M. (2007). A corrosion study of hot-dip galvanized steel sheet pre-treated with γ- mercaptopropyltrimethoxysilane, Surf. Coat. Tech., 201, pp. 4734-4742. DOI: 10.1016/j.surfcoat.2006.10.014. [13] Asgari, H., Toroghinejad, M.R., Golozar, M.A. (2008). The role of texture and microstructure in optimizing the corrosion behaviour of zinc hot-dip coated steel sheets, ISIJ Int., 48, pp. 628-633. DOI: 10.2355/isijinternational.48.628. [14] Gallego, A., Gil, J.F., Castro, E., Piotrokowski, R. (2007). Identification of coating damage processes in corroded galvanized steel by acoustic emission wavelet analysis, Surf. Coat. Tech., 201, pp. 4743-4756. DOI: 10.1016/j.surfcoat.2006.10.018 [15] Di Cocco, V. (2012). Sn and Ti influences on intermetallic phases damage in hot dip galvanizing, Fract. Struct. Int., 22, pp. 31-38, DOI: 10.3221/IGF-ESIS.22.05 [16] Di Cocco, V., Iacoviello, F., Natali, S. (2014). Damaging micromechanisms in hot-dip galvanizing Zn based coatings, Theor. Appl. Fract. Mec., 70, pp 91-98, DOI: 10.1016/j.tafmec.2014.05.003 [17] Vantadori, S., Carpinteri, A., Di Cocco, V., Fortese, G., Iacoviello, F., Natali, S., Ronchei, C., Scorza, D., Zanichelli, A. (2017). Novel zinc-based alloys used to improve the corrosion protection of metallic substrate, Eng. Fail. Anal., 82, pp. 327-329. DOI: 10.1016/j.engfailanal.2017.05.043 [18] Bellini, C., Iacoviello, F., Carlino, F., Di Cocco, V. (2019). The influence of hot dip galvanizing process on intermetallic phases formation, Mater. Des. Process. Commun., in press, DOI: 10.1002/mdp2.39. [19] Di Cocco, V., Iacoviello, F., Carlino, F., Natali, S. (2018). Bending damages in galvanized ductile cast irons, Proc. Struct. Int., 9, pp. 265-271. DOI: 10.1016/j.prostr.2018.06.036 [20] Iacoviello, F., Di Cocco, V. (2016). Influence of the graphite elements morphology on the fatigue crack propagation mechanisms in a ferritic ductile cast iron, Eng. Fract. Mech., 167, pp. 248-258. DOI: 10.1016/j.engfracmech.2016.03.041. [21] Di Cocco, V., Iacoviello, F., Rossi, A., Cavallini, M. (2014). Damaging micromechanisms characterization in a ferritic- pearlitic ductile cast iron, Fract. Struct. Int., 30, pp. 62-67. DOI: 10.3221/IGF-ESIS.30.09. [22] Iacoviello, F., Di Cocco, V., Rossi, A., Cavallini, M. (2013). Ductile cast iron: damaging micromechanisms at crack tip, Fract. Struct. Int., 25, pp. 102-108. DOI: 10.3221/IGF-ESIS.25.15. [23] Iacoviello, F., Di Cocco, V., Cavallini, M. (2016). Fatigue crack propagation and overload damaging micromechanisms in a ferritic–pearlitic ductile cast iron, Fatigue Fract. Eng. Mater. Struct., 39(8), pp. 999-1011. DOI: https://doi.org/10.1111/ffe.12443 [24] Iacoviello, F., Di Cocco, V., Bellini, C. (2019). Fatigue crack propagation and damaging micromechanisms in Ductile Cast Irons, Int. J. Fatigue, 124, pp. 48-54, DOI: 10.1016/j.ijfatigue.2019.02.030.

RkJQdWJsaXNoZXIy MjM0NDE=