Issue 48

F. V. Antunes et alii, Frattura ed Integrità Strutturale, 48 (2019) 676-692; DOI: 10.3221/IGF-ESIS.48.64 687 [6] Pirondi, A. and Nicoletto, G. (2002). Mixed Mode I/II Fracture Toughness of Bonded Joints, International Journal of Adhesion and Adhesives, 22, pp. 109-117. [7] Lin, G.-Y. and Shetty, D.K. (2003). Transformation Zones, Crack Shielding, and Crack Growth Resistance of Ce- TZP/Alumina Composite in Mode II and Combined Mode II and Mode I Loading, Engineering Fracture Mechanics, 70, pp. 2569-2585. [8] Banks-Sills, L. and Arcan, M. (1986). A compact mode II fracture specimen, Fracture Mechanics, 17, ASTM-STP 905, American Society for Testing and Materials, pp. 347-363. [9] Lo, K.W., Gong, Y.B., Tamilselvan, T. and Lai, M.O. (2003). A proposed specimen for KIIC testing, International Journal of Fracture, 124, pp. 127-137. [10] Hyde, T.H. and Chambers, A.C. (1988). A compact mixed-mode (CMM) fracture specimen, Journal of Strain Analysis, 23 (2), pp. 61-66. [11] Choi, R.S., Zhu, D. and Miller, R.A. (2003). Mode I, mode II and mixed-mode fracture of plasma-sprayed thermal barrier coatings at ambient and elevated temperatures, Proc. 8th International Symposium on Fracture Mechanics of Ceramics, University of Houston, (NASA/TM 2003-212185). [12] Patterson, E.A. and Gungor, S. (1997). A photoelastic study of an angle crack specimen subjected to mixed mode I- III displacements, Engineering Fracture Mechanics, 56, pp. 767-778. [13] Ayatollahi, M.R. and Aliha, M.R.M. (2005). Cracked Brazilian disc specimen subjected to mode II deformation, Engineering Fracture Mechanics, 75, pp. 493-503. [14] Lardender, T.J., Chakravarthy, J.D., Quinn, J.D. and Ritter, J.E. (2001). Further analysis of DCDC specimen with an offset hole, International Journal of Fracture, 109, pp. 227-237. [15] Richard, H.A. and Benitz, K. (1983). A loading device for the creation of mixed mode in fracture mechanics, International Journal of Fracture, 22, pp. R55-R58. [16] Richard, H.A. (1985). Bruchvorhersagen bei überlagerter normal- und schubbeanspruchung von risen, VDI Forschungsheft 631, Düsseldorf: VDI-Verlag, pp. 1-60. [17] Setién, J. and Varona, J.M. (1996). On the Use of Dimensional Analysis in Fracture Mechanics. Proc. 11th Biennial European Conference on Fracture (ECF11), Poitiers, France, Ed. by J. Petit, Vol.I, September 3-6, pp. 125-132. [18] Richard, H.A., Linnig, W. and Henn, K. (1991). Fatigue crack propagation under combined loading, Forensic Engineering, 3, pp. 99-109. [19] Qian, J. and Fatemi, A. (1996). Mixed mode fatigue crack: a literature survey, Engineering Fracture Mechanics, 55 (6), pp. 969-990. [20] Pavlou, D.G. Labeas, G.N., Vlachakis, N.V. and Pavlou, F.G. (2003). Fatigue crack propagation trajectories under mixed mode cycling loading, Engineering Structures, 25, pp. 869-875. [21] Sih, G.C. (1974). Strain energy density factor applied to mixed mode crack problems, International Journal of Fracture, 10, pp. 305-321. A PPENDIX A: L ITERATURE SOLUTION  15  he stress intensity factors for different loading angles considering  =0º are: a 0.26 2.65 F cosα W a K π.a I a a W.t 1 a / W 2 1 0.55 0.08( ) W a W a         (A1) a 0.23 1.40 F sinα W a K π.a II a a W.t 1 a / W 2 1 0.67 2.08( ) W a W a          (A2) T

RkJQdWJsaXNoZXIy MjM0NDE=