Issue 48

M. K. Hussain et alii, Frattura ed Integrità Strutturale, 48 (2019) 599-610; DOI: 10.3221/IGF-ESIS.48.58 609 [28] Hussain, M.K. and Murthy, K.S.R.K. (2019). Calculation of mixed mode (I/II) stress intensities at sharp V - notches using finite element notch opening and sliding displacements, Fatigue Fract. Eng. Mater. Struct. pp. 1–18. DOI: 10.1111/ffe.12977. [29] Hussain, M.K. and Murthy, K.S.R.K. (2018). A point substitution displacement technique for estimation of elastic notch stress intensities of sharp V-notched bodies, Theor. Appl. Fract. Mec., 97, pp. 87–97. DOI: 10.1016/j.tafmec.2018.07.010. [30] Henshel, R.D. and Shaw, K.G. (1976). Crack tip finite elements are unnecessary, Int. J. Numer. Meth. Eng., 9, pp. 495–507. DOI: 10.1002/nme.1620090302. [31] Barsoum, R.S. (1976). On the use of isoparametric finite elements in linear fracture mechanics, Int. J. Numer. Meth. Eng., 10, pp. 25–27. DOI: 10.1002/nme.1620100103. [32] ANSYS. Theory reference manual. Release 11. Swanson Analysis Systems, Inc., 2007. [33] Zhao, Z. and Hahn, H.G. (1992). Determining the SIF of a V-notch from the results of a mixed-mode crack, Eng. Fract. Mech., 43(4), pp. 511–518. DOI: 10.1016/0013-7944(92)90195-K. [34] Ayatollahi, M.R. and Nejati, M. (2011). Experimental evaluation of stress field around the sharp notches using photoelasticity, Mater. Des., 32, pp. 561–569. DOI: 10.1016/j.matdes.2010.08.024. N OMENCLATURE a notch length , A B parameters related to finite element displacements 0 0 2 , , A B B parameters related to rigid body motion    1, 2,3,... n A n Williams coefficients for mode I    1,3, 4,... n B n Williams coefficients for mode II E Young’s modulus , I II F F modes I and II normalized notch stress intensity factors F compressive point load on the sharp V-notched Brazilian disc G shear modulus h semi-height of the notched plate N L notch tip element length , I II K K modes I and II notch stress intensity factors R radius of the sharp V-notched Brazilian disc  residual    , r polar coordinate components opt r optimum point op r optimum radius , u v notch field displacement w plate width  parameter related to notch angle  notch inclination angle  notch opening angle  Kolosov constant   1 1 , I II modes I and II eigenvalues correspond to the singularity term   , I II n n modes I and II eigenvalues correspond to the n -th term  Poisson’s ratio  far field stress   , u v notch opening and sliding displacements

RkJQdWJsaXNoZXIy MjM0NDE=