Issue 48

M. K. Hussain et alii, Frattura ed Integrità Strutturale, 48 (2019) 599-610; DOI: 10.3221/IGF-ESIS.48.58 608 [4] Berto, F. and Lazzarin, P. (2014). Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R. Rep., 75, pp. 1–48. DOI: 10.1016/j.mser.2013.11.001. [5] Dunn, M.L., Suwito, W., Cunningham, S. and May, C.W. (1997). Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading, Int. J. Fract., 84, pp. 67–381. DOI: 10.1023/A:1007346203407. [6] Ayatollahi, M.R., Torabi, A.R. and Azizi, P. (2011). Experimental and theoretical assessment of brittle fracture in engineering components containing a sharp V-notch, Exp. Mech., 51, pp. 919–932. DOI: 10.1007/s11340-010-9401- z. [7] Ayatollahi, M.R. and Torabi, A.R. (2011). Failure assessment of notched polycrystalline graphite under tensile-shear loading, Mater Sci. Eng. A., 528, pp. 5685–5695. DOI: 10.1016/j.msea.2011.04.066. [8] Lazzarin, P. and Livieri, P. (2001). Notch stress intensity factors and fatigue strength of aluminium and steel welded joints, Int. J. Fatigue, 23, pp. 225–232. DOI: 10.1016/S0142-1123(00)00086-4. [9] Fischer, C., Fricke, W. and Rizzo, C.M. (2016). Review of the fatigue strength of welded joints based on the notch stress intensity factor and SED approaches, Int. J. Fatigue, 84, pp. 59–66. DOI: 10.1016/j.ijfatigue.2015.11.015. [10] Gross, B. and Mendelson, A. (1972). Plane elastostatic analysis of V-notched plates, Int. J. Fract. Mech., 8 (3), pp. 267–276. DOI: 10.1007/BF00186126. [11] Carpenter, W.C. (1984). A collocation procedure for determining fracture mechanics parameters at a corner, Int. J. Fract., 24, pp. 255–266. DOI: 10.1007/BF00020740. [12] Chen, D.H. (1995). Stress intensity factors for V-notched strip under tension or in-plane bending, Int. J. Fract., 70, pp. 81–97, 1995. DOI: 10.1007/BF00018137. [13] Noda, N.A., Oda, K. and Inoue, T. (1996). Analysis of newly-defined stress intensity factors for angular corners using singular integral equations of the body force method, Int. J. Fract., 76, pp. 243–261. DOI: 10.1007/BF00048289. [14] Ju, S.H. and Chung, H.Y. (2007). Accuracy and limit of a least-squares method to calculate 3D notch SIFs, Int. J. Fract., 148 (2), pp. 169–183. DOI: 10.1007/s10704-008-9193-7. [15] Liu, Y., Wu, Z., Liang, Y. and Liu, X. (2008). Numerical methods for determination of stress intensity factors of singular stress field, Eng. Fract. Mech. 75 (16), pp. 4793–4803. DOI: 10.1016/j.engfracmech.2008.06.007. [16] Treifi, M. and Oyadiji, S.O. (2013). Strain energy approach to compute stress intensity factors for isotropic homogeneous and bi-material V-notches, Int. J. Solids Struct., 50(14–15), pp. 2196–2212. DOI: 10.1016/j.ijsolstr.2013.03.011 [17] Lazzarin, P., Berto, F. and Zappalorto, M. (2010). Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications, Int. J. Fatigue., 32(10), pp. 1559–1567. DOI: 10.1016/j.ijfatigue.2010.02.017. [18] Treifi, M., Oyadiji, S.O. and Tsang, D.K.L. (2009). Computation of the stress intensity factors of sharp notched plates by the fractal-like finite element method, Int. J. Numer. Meth. Engng., 77, pp. 558–580. DOI: 10.1002/nme.2425. [19] Treifi, M., Oyadiji, S.O. and Tsang, D.K.L. (2008). Computations of modes I and II stress intensity factors of sharp notched plates under in-plane shear and bending loading by the fractal-like finite element method, Int. J. Solids Struct., 45(25–26), pp. 6468–6484. DOI: 10.1016/j.ijsolstr.2008.08.013. [20] Treifi, M., Oyadiji, S.O. and Tsang, D.K.L. (2009). Computations of the stress intensity factors of double-edge and centre V-notched plates under tension and anti-plane shear by the fractal-like finite element method, Eng. Fract. Mech., 76, pp. 2091–2108. DOI: 10.1016/j.engfracmech.2009.05.018. [21] Yu, T. and Shi, L. (2012). Determination of sharp V-notch stress intensity factors using the extended finite element method, J. Strain Anal. Eng. Des., 47, pp. 95–103. DOI: 10.1177/0309324711433981. [22] Yi, G., Yu, T., Quoc, T., Ma, C. and Hirose, S. (2017). SIFs evaluation of sharp V-notched fracture by XFEM and strain energy approach, Theor. Appl. Fract. Mec., 89, pp. 35–44. DOI: 10.1016/j.tafmec.2017.01.005. [23] Sinclair, G.B., Okajima, M. and Griffin J.H. (1984). Path independent integrals for computing stress intensity factors at sharp notches in elastic plates, Int. J. Numer. Meth. Eng., 20(6), pp. 999–1008. DOI: 10.1002/nme.1620200603. [24] Labossiere, P.E.W. and Dunn, K.L. (1998). Calculation of stress intensities at sharp notches in anisotropic media, Eng. Fract. Mech., 61(5–6), pp. 635–654. DOI: 10.1016/S0013-7944(98)00039-3. [25] Chang, J.H. and Kang, L.K. (2002). Evaluation of the stress field around a notch tip using contour integrals, Int. J. Eng. Sci., 40(5), pp. 569–586. DOI: 10.1016/S0020-7225(01)00078-7. [26] Kim, J.K. and Cho, S.B. (2009). Effect of second non-singular term of mode I near the tip of a V-notched crack, Fatigue Fract. Eng. Mater. Struct., 32(4), pp. 346–356. DOI: 10.1111/j.1460-2695.2009.01336.x. [27] Ayatollahi, M.R. and Nejati, M. (2011). Determination of NSIFs and coefficients of higher order terms for sharp notches using finite element method, Int. J. Mech. Sci., 53(3), pp. 164–177. DOI: 10.1016/j.ijmecsci.2010.12.005.

RkJQdWJsaXNoZXIy MjM0NDE=