Issue 48
A. Ghosh et alii, Frattura ed Integrità Strutturale, 48 (2019) 585-598; DOI: 10.3221/IGF-ESIS.48.57 597 [3] Sinha, S., Ghosh, A. and Gurao, N.P. (2016). Effect of initial orientation on the tensile properties of commercially pure titanium, Phil. Mag. 96 (15), pp. 1485-1508. DOI: 10.1080/14786435.2016.1165873. [4] Roth, A., Lebyodkin, M.A., Lebedkina, T.A, Lecomte, J.S, Richeton, T. and Amouzou, K.E.K. (2014). Mechanisms of anisotropy of mechanical properties of α-titanium in tension conditions, Mater. Sci. Eng. A, 596 (24), pp. 236-243. DOI: 10.1016/j.msea.2013.12.061. [5] Srinivasan, N., Velmurugan, R., Kumar, R., Singh, S.K., and Pant, B. (2016). Deformation behavior of commercially pure (CP) titanium under equi-biaxial tension, Mater. Sci. Eng. A, 674 (30), pp. 540-551. DOI: 10.1016/j.msea.2016.08.018 [6] Bathini, U., Srivatsan, T.S., Patnaik, A.K., and Menzemer, C. (2011). Mechanisms Governing Fatigue, Damage, and Fracture of Commercially Pure Titanium for Viable Aerospace Applications, J. Aerosp. Eng., 24 (4), pp. 415-424. DOI: 10.1061/(ASCE)AS.1943-5525.0000090. [7] Barkia,B., Doquet, V., Couzinie´, J.P., Guillot, I., and He´ripre´, E. (2015). In situ monitoring of the deformation mechanisms in titanium with different oxygen contents, Mater. Sci. Eng. 636 (11), pp. 91-102. DOI: 10.1016/j.msea.2015.03.044. [8] Won, J.W., Park, K.T., Hong, S.G., and Lee, C.S. (2015). Anisotropic yielding behavior of rolling textured high purity titanium, Mater. Sci. Eng. A, 637 (18), pp. 215-221. DOI: 10.1016/j.msea.2015.03.096. [9] Hama,T., Nagao, H., Kobuki, A., Fujimoto, H., and Takuda, H. (2015). Work-hardening and twinning behaviors in a commercially pure titanium sheet under various loading paths, Mater. Sci. Eng. A, 620 (3), pp. 390-398. DOI: 10.1016/j.msea.2014.10.024. [10] Nixon, M.E., Cazacu, O., and Lebensohn, R.A. (2010). Anisotropic response of high-purity α-titanium: Experimental characterization and constitutive modeling, Int. J. Plasticity, 26 (4), pp. 516-532. DOI: 10.1016/j.ijplas.2009.08.007. [11] Valle, E.C.M, Pachla, V., Kulczyk, M., Savoini, B., Monge, M.A., Ballesteros, C., and Sabirov, I. (2013). Anisotropy of uni-axial and bi-axial deformation behavior of pure Titanium after hydrostatic extrusion, Mater. Sci. Eng. A, 588 (20), pp. 7-13. DOI: 10.1016/j.msea.2013.08.044. [12] Wang, L., Zhang, H., Huang, G., Cao, M., Cao, X., Mostaed, E., and Vedani, M. (2016). Formability and anisotropy of the mechanical properties in commercially pure titanium after various routes normal and different speed rolling, J. Mater. Res., 31 (21), pp. 3372-3380. DOI: 10.1557/jmr.2016.352. [13] Christian, J.W. and Mahajan, S. (1995). Deformation twinning, Progr. Mater. Sci., 39 (1-2), pp. 1-157. DOI: 10.1016/0079-6425(94)00007-7. [14] Arul Kumar, M., Kanjarla, A.K., Niezgoda, S.R., Lebensohn, R.A., and Tome, C.N. (2015). Numerical study of the stress state of a deformation twin in magnesium , Acta Mater., 84 (1), pp. 349-358. DOI:10.1016/j.actamat.2014.10.048. [15] Sinha, S., Pukenas, A., Ghosh, A., Singh, A., Skrotzki, W., and Gurao, N.P. (2017). Effect of initial orientation on twinning in commercially pure titanium, Phil. Mag., 97 (10), pp. 775-797. DOI: 10.1080/14786435.2017.1279364. [16] Ghosh, A., and Gurao, N.P. (2017). Effect of crystallographic texture on ratcheting response of commercially pure titanium, Mater. Des., 115 (5), pp. 121-132. DOI: 10.1016/j.matdes.2016.11.052. [17] Sinha, S., and Gurao, N.P. (2017). In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading, Metall. Mater. Trans. A 48 (12), pp. 5813-5832. DOI: 10.1007/s11661-017-4349-6. [18] ASTM E-606-80, Standard Recommended Practice for Constant Amplitude Low Cycle Fatigue Testing, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States; 2016. [19] Lebensohn, R.A., Tome, C.N. (1993). A self – consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta metall. Mater. 41(9), pp. 2611-2624. DOI:10.1016/0956-7151(93)90130-K. [20] Becker, H. and Pantleon, W. (2013). Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium, Comp. Mater. Sci., 76, pp. 52-59. DOI: 10.1016/j.commatsci.2013.03.028. [21] Panda, S., Sahoo, S.K., Dash, A., Bagwan, M., Kumar, G., Mishra, S.C., and Suwas, S. (2014). Orientation dependent mechanical properties of commercially pure (cp) titanium, Mater. Charact. 98, pp. 93-101. DOI: 10.1016/j.matchar.2014.10.011. [22] Gaudin, C., and Feaugas, X. (2004). Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses, Acta Mater. 52 (10), pp. 3097-3110. DOI: 10.1016/j.actamat.2004.03.011. [23] D. Hull and D.J. Bacon, 5 th ed., Butterworth-Heinemann 2011, USA, pp. 114. [24] Ghosh, A., Brokmeier, H.G., Hamdany, N. Al., Sinha, S., Schell, N., Gurao, N.P. (2018). A Synchrotron X-ray and electron backscatter diffraction based investigation of deformation and failure micro-mechanisms of monotonic and cyclic loading in titanium, Mater. Sci. Eng. A 726, pp. 143-153. DOI: 10.1016/j.msea.2018.04.036.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=