Issue 48

S.C.S.P. Kumar Krovvidi et alii, Frattura ed Integrità Strutturale, 48 (2019) 577-584; DOI: 10.3221/IGF-ESIS.48.56 584 [8] Sandhya R., Rao K.B.S. and Mannan S.L. (2005). Creep–fatigue interaction behaviour of a 15Cr–15Ni, Ti modified austenitic stainless steel as a function of Ti/C ratio and microstructure, Mater. Sci. Engg. A 392 pp. 326-334. DOI: 10.1016/j.msea.2004.09.040. [9] Zhang X., Tu S.T. and Xuan F. (2014). Creep–fatigue endurance of 304 stainless steels, Theo. Appl. Fract. Mech. 71 pp. 51-66. DOI: 10.1016/j.tafmec.2014.05.001. [10] Goswami T. and Hanninen H. (2001). Dwell effects on high temperature fatigue damage mechanisms: Part II, Mater. Des. 22 pp. 217-236. DOI: 10.1016/S0261-3069(00)00061-3. [11] Goyal S., Mariappan K., Shankar V, Sandhya R., Laha K. and Bhaduri A.K. (2018). Studies on creep-fatigue interaction behaviour of Alloy 617M, Mater. Sci. Engg. A 730 pp. 16-23. DOI: 10.1016/j.msea.2018.05.037. [12] Rodriguez P. (1984). Serrated plastic flow, Bull. Mater. Sci. 6 pp. 653-663. [13] Ganesan V., Laha K., Nandagopal M., Parameswaran P. and Mathew M.D. (2014). Effect of nitrogen content on dynamic strain ageing behaviour of type 316LN austenitic stainless steel during tensile deformation, Mater. High Temp. 31 pp. 162-170. DOI: 10.1179/1878641314Y.0000000009. [14] Goyal S., Sandhya R., Valsan M. and Rao K.B.S. (2009). The effect of thermal ageing on low cycle fatigue behaviour of 316 stainless steel welds, Int. J. Fatigue 31 pp. 447- 454. DOI: 10.1016/j.ijfatigue.2008.07.006. [15] Mannan S.L. (1993). Role of dynamic strain ageing in low cycle fatigue, Bull. Mater. Sci. 16 pp. 561-582. DOI: 10.1007/BF02757656. [16] Rao K.B.S., Valsan M., Sandhya R., Mannan S.L. and Rodriguez P. (1990). Manifestations of dynamic strain ageing during low cycle fatigue of type 304 stainless steel, Met. Mater. Proc. 2 pp. 17-36. [17] Srinivasan V.S., Sandhya R., Rao K.B.S., Mannan S.L. and Raghavan K.S. (1991). Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel, Int. J. Fatigue 13 pp. 471-478. DOI: 10.1016/0142-1123(91)90482-E. [18] Goyal S., Mandal S., Parameswaran P., Sandhya R., Athreya C.N. and Laha K. (2017). A comparative assessment of fatigue deformation behavior of 316 LN SS at ambient and high temperature, Mater. Sci. Engg. A 696 pp. 407- 415. DOI: 10.1016/j.msea.2017.04.102. [19] Sarkar A., Nagesha A., Sandhya R., Laha K. and Okazaki M. (2018). Manifestations of dynamic strain aging under low and high cycle fatigue in a type 316LN stainless steel, Mater. High Temp. 35 pp. 523- 528. DOI: 10.1080/09603409.2017.1404684. [20] Kujawski D. (1989). Fatigue failure criterion based on strain energy density, Theoretical Appl. Mech. 7 pp. 15-22. [21] Roy S.C., Goyal S., Sandhya R. and Ray S.K. (2012). Low cycle fatigue life prediction of 316 L(N) stainless steel based on cyclic elasto-plastic response, Nucl. Eng. Des. 253 pp. 219- 225. DOI: 10.1016/j.nucengdes.2012.08.024. [22] Shankar V., Mariappan K., Sandhya R., Laha K., Jayakumar T. and Kumar R.E. (2015). Effect of W and Ta on creep– fatigue interaction behavior of reduced activation ferritic–martensitic (RAFM) steels, Fusion Eng. Des. 100 pp. 314- 320. DOI: 10.1016/j.fusengdes.2015.06.191.

RkJQdWJsaXNoZXIy MjM0NDE=