Issue 48
J. Bär et alii, Frattura ed Integrità Strutturale, 48 (2019) 563-570; DOI: 10.3221/IGF-ESIS.48.54 570 R EFERENCES [1] Luong, M.P. (1995). Infrared Thermographic scanning of fatigue in metals. Nuclear Engineering and Design 158, pp. 363–373. DOI: 10.1016/0029-5493(95)01043-H. [2] La Rosa, G., Risitano, A. (2002). Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue 22, pp. 65-73. DOI: 10.1016/S0142-1123(99)00088-2. [3] Meneghetti, G. (2007). Analysis of the fatigue strength of a stainless steel based on the energy dissipation. International Journal of Fatigue 29, pp. 81-94. DOI: 10.1016/j.ijfatigue.2006.02.043. [4] De Finis, R., Palumbo, D., Ancona, F., Galietti, U. (2015). Fatigue limit evaluation of various martensitic stainless steels with new robust thermographic data analysis. International Journal of Fatigue 74, pp. 88–96. DOI: 10.1016/j.ijfatigue.2014.12.010. [5] Thomson, W. (1853). On the Dynamical Theory of Heat, with numerical results deduced from Joule's equivalent of a Thermal Unit. Transactions of the Royal Society of Edingburgh 20, pp. 261-288. [6] Urbanek, R., Bär, J. (2017). Lock-In Thermographic Stress Analysis of notched and unnotched specimen under alternating loads. Procedia Structural Integrity 5, pp. 785-792. DOI: 10.1016/j.prostr.2017.07.170. [7] Enke, N.F., Sandor, B.I. (1988). Cyclic plasticity analysis by differential infrared thermography. Proceedings of the VII International Congress on Experimental Mechanics, pp. 830–835. [8] Sakagami, T, Kubo, S, Tamura, E., Nishimura, T. (2005). Identification of plastic-zone based on double frequency lock- in thermographic temperature measurement. Proceedings of ICF 11, pp. 3751–3756. [9] Brémond, P. (2007). New developments in Thermo Elastic Stress Analysis by Infrared Thermography. IV Pan- American Conference for Non Destructive Testing. [10] Shiozawa, D., Inagawa, T., Washio, T., Sakagami, T. (2016). Fatigue limit estimation of stainless steels with new dissipated energy data analysis. Procedia Structural Integrity 2, pp. 2091–2096. DOI: 10.1016/j.prostr.2016.06.262. [11] Finis, R. de, Palumbo, D., Galietti, U. (2016). Mechanical Behaviour of Stainless Steels under Dynamic Loading: An Investigation with Thermal Methods. Journal of Imaging 2. DOI: 10.3390/jimaging2040032. [12] Urbanek, R., Bär, J. (2017). Lock-In Thermographic Stress Analysis of notched and unnotched specimen under alternating loads. Procedia Structural Integrity 5, pp. 785–792. DOI: 10.1016/j.prostr.2017.07.170. [13] Urbanek, R., Bär, J. (2017). Influence of motion compensation on lock-In thermographic investigations of fatigue crack propagation. Engineering Fracture Mechanics 183, pp. 13–25, DOI: 10.1016/j.engfracmech.2017.03.043. [14] Bär, J., Volpp, T., Vollautomatische Experimente zur Ermüdungsrissausbreitung, Materialprüfung 43, pp. 242-247.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=