Issue 48

S. Kikuchi et alii, Frattura ed Integrità Strutturale, 48 (2019) 545-553; DOI: 10.3221/IGF-ESIS.48.52 552 [28] Kikuchi, S., Imai, T., Kubozono, H., Nakai, Y., Ueno, A., Ameyama, K. (2015). Evaluation of near-threshold fatigue crack propagation in Ti-6Al-4V alloy with harmonic structure created by mechanical milling and spark plasma sintering, Frattura ed Integrità Strutturale, 34(9), pp. 261-270. DOI: 10.3221/IGF-ESIS.34.28. [29] Kikuchi, S., Imai, T., Kubozono, H., Nakai, Y., Ota, M., Ueno, A., Ameyama, K. (2016). Effect of harmonic structure design with bimodal grain size distribution on near-threshold fatigue crack propagation in Ti-6Al-4V Alloy, Int. J. Fatigue, 92(2), pp. 616-622. DOI: 10.1016/j.ijfatigue.2016.02.038. [30] Kikuchi, S., Mori, T., Kubozono, H., Nakai, Y., Kawabata, M.O., Ameyama, K. (2017). Evaluation of near-threshold fatigue crack propagation in harmonic-structured CP Titanium with a bimodal grain size distribution, Eng. Fract. Mech., 181, pp. 77-86. DOI: 10.1016/j.engfracmech.2017.06.026. [31] Tokizane, M., Isonishi, K. (1992). Production of uniformly-sized spherical powder by plasma rotating electrode process and its applications to some intermetallics powders, J. Jpn. Soc. Powder Metal., 39(12), pp. 1137-1144. DOI: 10.2497/jjspm.39.1137. [32] Newman, J.C., Raju, I.S. (1984). Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads, NASA Langley Res. Ctr., Hampton, VA(NASA Technical Memorandum 85793). [33] Kikukawa, M., Jono, M., Tanaka, K., Takatani, M. (1976). Measurement of fatigue crack propagation and crack closure at low stress intensity level by unloading elastic compliance method, J. Soc. Mater. Sci., Jpn., 25(276), pp. 899-903. DOI: 10.2472/jsms.25.899. [34] Ohsawa, H., Nishimura, H. (1989). Manufacturing methods of superplastic materials and commercial applications, J. Jpn Inst. Light Metals, 39(11), pp. 765-775. DOI: 10.2464/jilm.39.765. [35] Kikuchi, S., Akebono, H., Ueno, A., Ameyama, K. (2018). Formation of commercially pure titanium with a bimodal nitrogen diffusion phase using plasma nitriding and spark plasma sintering, Powder Technol., 344, pp. 410-417. DOI: 10.1016/j.powtec.2018.02.047. [36] Kikuchi, S., Nakamura, Y., Ueno, A., Ameyama, K. (2015). Low temperature nitriding of commercially pure titanium with harmonic structure, Mater. Trans., 56(11), pp. 1807-1813. DOI: 10.2320/matertrans.Y-M2015822. [37] Taira, S., Tanaka, K., Nakai, Y. (1978). A model of crack-tip slip band blocked by grain boundary, Mech. Res. Comm., 5(6), pp. 375-381. DOI: 10.1016 /0093-6413(78)90014-9. [38] Shibanuma, K., Ueda, K., Ito, H., Nemoto, Y., Kinefuchi, M., Suzuki, K., Enoki, M. (2018). Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth, Mater. Design, 139, pp. 269-282. DOI: 10.1016/j.matdes.2017.10.069 . [39] Tanaka, K., Nakai, Y., Yamashita, M. (1981). Fatigue growth threshold of small cracks, Int. J. Fract., 17(5), pp. 519-533. DOI: 10.1007/BF00033345 [40] Suresh, S., Ritchie, R.O. (1984). Propagation of short fatigue cracks, Int. Metals Rev., 29(1), pp. 445–476. DOI: 10.1179/imtr.1984.29.1.445. [41] Makino, T., Neishi, Y., Shiozawa, D., Kikuchi, S., Okada, S., Kajiwara K., Nakai, Y. (2015). Effect of defect length on rolling contact fatigue crack propagation in high strength steel, Frattura ed Integrita Strutturale, 34(9), pp. 334-340. DOI: 10.3221/IGF-ESIS.34.36. [42] Nakai, Y., Shiozawa, D., Kikuchi, S., Sato, K., Obama, T. (2015). In situ observation of rolling contact fatigue cracks by laminography using ultrabright synchrotron radiation, Frattura ed Integrita Strutturale, 34(9), (2015) pp. 246-254. DOI: 10.3221/IGF-ESIS.34.26. [43] Nakai, Y., Shiozawa, D., Kikuchi, S., Obama, T., Saito, H., Makino, T., Neishi, Y. (2016). Effects of inclusion size and orientation on rolling contact fatigue crack initiation observed by laminography using ultra-bright synchrotron radiation, Procedia Structural Integrity, 2, pp. 3117-3124. DOI: 10.1016/J.PROSTR.2016.06.389. [44] Makino, T., Neishi, Y., Shiozawa, D., Kikuchi, S., Okada, S., Kajiwara K., Nakai, Y. (2016). Effect of defect shape on rolling contact fatigue crack initiation and propagation in high strength steel, Int. J. Fatigue, 92(2), pp. 507-516. DOI: 10.1016/j.ijfatigue.2016.02.015. [45] Nakai, Y., Shiozawa, D., Kikuchi, S., Obama, T., Saito, H., Makino T., Neishi, Y. (2017). 4D observations of rolling contact fatigue processes by laminography using ultra-bright synchrotron radiation, Eng. Fract. Mech., 183, pp. 180- 189. DOI: 10.1016/j.engfracmech.2017.03.021. [46] Makino, T., Neishi, Y., Shiozawa, D., Kikuchi, S., Saito, H., Kajiwara K., Nakai, Y. (2017). Rolling contact fatigue damage from artificial defects and sulphide inclusions in high strength steel, Procedia Structural Integrity, 7, pp. 468- 475. DOI: 10.1016/j.prostr.2017.11.114. [47] Nakai, Y., Shiozawa, D., Nakao, R., Asakawa N., Kikuchi, S. (2016). Misorientation measurement of individual grains in fatigue of polycystalline alloys by diffraction contrast tomography using ultrabright synchrotron radiation, Mater. Sci. Forum, 879, pp. 1355-1360. DOI: 10.4028 /www.scientific.net/MSF.879.1355.

RkJQdWJsaXNoZXIy MjM0NDE=