Issue 48

S. Kikuchi et alii, Frattura ed Integrità Strutturale, 48 (2019) 545-553; DOI: 10.3221/IGF-ESIS.48.52 551 DOI: 10.2320/jinstmet.J2013070. [7] Kikuchi, S., Iwamae, S., Akebono, H., Komotori, J., Kadota, K. (2018). Effect of atmospheric-controlled induction- heating fine particle peening on electrochemical characteristics of austenitic stainless steel, Surf. Coat. Technol., 334, pp. 189-195. DOI: 10.1016/j.surfcoat.2017.08.001. [8] Lewis, A.C., Bingert, J.F., Rowenhorst, D.J., Gupta, A., Geltmacher, A.B., Spanos, G. (2006). Two- and three- dimensional microstructural characterization of a super-austenitic stainless steel, Mater. Sci. Eng. A, 418(1-2), pp. 11- 18. DOI: 10.1016/j.msea.2005.09.088. [9] Chen, X.H., Lu, J., Lu, L., Lu, K. (2005). Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Mater., 52(10), pp. 1039-1044. DOI: 10.1016/j.scriptamat.2005.01.023. [10] Schino, A.D., Kenny, J.M. (2003). Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel, Mater. Lett., 57(12), pp. 1830-1834. DOI: 10.1016/S0167-577X(02)01076-5. [11] Terada, D., Inoue S., Tsuji N. (2007). Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process, J. Mater. Sci., 42(5), pp. 1673-1681. DOI: 10.1007/s10853-006-0909-7. [12] Terada, D., Inoue, M., Kitahara H., Tsuji N. (2008). Change in mechanical properties and microstructure of ARB processed Ti during annealing, Mater. Trans., 49(1), pp. 41-46. DOI: 10.2320/matertrans.ME200710. [13] Wang, Y., Chen, M., Zhou, F., Ma, E. (2002). High tensile ductility in a nanostructured metal, Nature, 419, pp. 912– 915. DOI: 10.1038/nature01133. [14] Fang, T.H., Li, W.L., Tao, N.R., Lu, K. (2011). Revealing extraordinary intrinsic tensile plasticity in gradient nano- grained copper, Science, 331, pp. 1587–1590. DOI: 10.1126/science.1200177. [15] Szabó, P.J., Field, D.P., Jóni, B, Horky, J., Ungár, T. (2015). Bimodal grain size distribution enhances strength and ductility simultaneously in a low-carbon low-alloy steel, Metall. Mat. Trans. A, 46(5), pp. 1948-1957. DOI: 10.1007/s11661-015-2783-x. [16] Mimoto, T., Umeda, J., Kondoh, K. (2015). Titanium powders via gas-solid direct reaction process and mechanical properties of their extruded materials, Mater. Trans., 56(8), pp. 1153-1158. DOI: 10.2320/matertrans.L-M2015816. [17] Mukai, T., Kawazoe, M., Higashi, K. (1998). Dynamic mechanical properties of a near-nano aluminum alloy processed by equal-channel-angular-extrusion, Nanostruct. Mater., 10(5), pp. 755-765. DOI: 10.1016/S0965-9773(98)00113-5. [18] Ueno, A., Fujiwara, H., Rifai, M., Zhang, Z., Ameyama, K. (2012). Fractographical analysis on fracture mechanism of stainless steel having harmonic microstructure, J. Soc. Mater. Sci., Jpn., 61(8), pp. 686–691. DOI: 10.2472/jsms.61.686. [19] Zhang, Z., Vajpai, S.K., Orlov, D., Ameyama, K. (2014). Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics, Mater. Sci. Eng. A, 598, pp. 106-113. DOI: 10.1016/j.msea.2014.01.023. [20] Zhang, Z., Orlov, D., Vajpai, S.K., Tong, B., Ameyama, K. (2015). Importance of bimodal structure topology in the control of mechanical properties of a stainless steel, Adv. Eng. Mater., 17(6), pp. 791-795. DOI: 10.1002/adem.201400358. [21] Rai, P.K., Shekhar, S., Nakatani, M., Ota, M., Vajpai, S.K., Ameyama, K., Mondal, K. (2017). Wear behavior of harmonic structured 304L stainless steel, J. Mater. Eng. Perform., 26(6), pp. 2608-2618. DOI: 10.1007/s11665-017-2719-2. [22] Park, H.K., Ameyama, K., Yoo, J., Hwang, H., Kim, H.S. (2018). Additional hardening in harmonic structured materials by strain partitioning and back stress, Mater. Res. Lett., 6(5), pp. 261-267. DOI: 10.1080/21663831.2018.1439115. [23] Zhang, Z., Ma, H., Zheng, R., Hu, Q., Nakatani, M., Ota, M., Chen, G., Chen, X., Ma, C., Ameyama, K. (2017). Fatigue behavior of a harmonic structure designed austenitic stainless steel under uniaxial stress loading, Mater. Sci. Eng. A, 707, pp. 287-294. DOI: 10.1016/j.msea.2017.09.063. [24] Kikuchi, S., Takemura, K., Ueno, A., Ameyama, K. (2015). Evaluation of the 4-points bending fatigue properties of Ti- 6Al-4V alloy with harmonic structure created by mechanical milling and spark plasma sintering, J. Soc. Mater. Sci. Jpn., 64(11), pp. 880-886. DOI: 10.2472/jsms.64.880. [25] Kikuchi, S., Hayami, Y., Ishiguri, T., Guennec, B., Ota, M., Ueno, A., Ameyama, K. (2017). Effect of bimodal grain size distribution on fatigue properties of Ti-6Al-4V alloy with harmonic structure under four-point bending, Mater. Sci. Eng. A, 687, pp. 269-275. DOI: 10.1016/j.msea.2017.01.076. [26] Kikuchi, S., Kubozono, H., Nukui, Y., Ueno, A., Kawabata, M.O., Ameyama, K. (2018). Statistical fatigue properties and small fatigue crack propagation in bimodal harmonic structured Ti-6Al-4V alloy under four-point bending, Mater. Sci. Eng. A, 711, pp. 29-36. DOI: 10.1016/j.msea.2017.11.010. [27] Nukui, Y., Kubozono, H., Kikuchi, S., Nakai, Y., Ueno, A., Kawabata, M.O., Ameyama, K. (2018). Fractographic analysis of fatigue crack initiation and propagation in CP titanium with a bimodal harmonic structure, Mater. Sci. Eng. A, 716, pp. 228-234. DOI: 10.1016/j.msea.2018.01.054.

RkJQdWJsaXNoZXIy MjM0NDE=