Issue 48

X.-g. Huang et alii, Frattura ed Integrità Strutturale, 48 (2019) 48 1 -490; DOI: 10.3221/IGF-ESIS.48.46 489 [9] Emi H., Yuasa M., Kumano A., Arima T., Yamamoto N., and Umino M. (1992). A study on life assessment of ships and offshore structures: 2nd report: risk assessment of fatigue failures of hull structures. Journal of Society of Naval Architects of Japan, 172, pp.627-35. [10] Li G. Y., Li X. F., and Ao L. G. (2006). Investigation on hot ductility and strength of continuous casting slab for AH 32 steel. Acta Metallurgica Sinica, 19(1), pp.75-78. DOI : 10.1016/S1006-7191(06)60026-4. [11] Jia J. L., Dong Z. Q., Yuan J. L., and Han T. W. (2013). Study on mechanical properties of AH 32 opened plate. Advanced Materials Research, 631-632, pp. 354-357. DOI: 10.4028/www.scientific.net/AMR.631-632.354. [12] Zhang Z. F., Li L. B., and Li Y. Z. (2013). Research of test and simulation on fatigue strength of T welded joint for AH 32 steel. Ship Science and Technology, 35(6), pp.57-60. [13] Dong Q., Yang P., Xu G., and Jiang W. (2018). Experimental study on interaction of low cycle fatigue and accumulative plastic damage of AH 32 steel in uniaxial cyclic loading. Journal of Ship Mechanics, 22(6), pp. 771-782. [14] Dong Q., Yang P., and Xu G. (2019). Low cycle fatigue analysis of CTOD under variable amplitude loading for AH- 32 steel. Marine Structures, 63, pp.257-268 DOI : 10.1016/j.marstruc.2018.10.002. [15] Sun Y., Li H. M., Wang C. X., and Shao G. J. (2018). Plastic strain accumulation behaviour of AH 32 steel in a cyclic stress-corrosion environment . Journal of Constructional Steel Research, 2018, 145: 1-9. DOI: 10.1016/j.jcsr.2018.02.011. [16] It o M., K aneko M., Nishimura S., and Sato H. (2012). Development of corrosion resistant steel for bottom plates of crude oil tankers and onboard evaluation results. ASME International Conference on Ocean, 77, pp. 549-551. DOI: 10.1115/OMAE2012-83821. [17] Arzaghi E., Abbassi R., Garaniya V., Binns J., Chin C., Khakzad N., and Reniers G. (2018). Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines. Ocean Engineering, 150(15), pp.391-396. DOI: 10.1016/j.oceaneng.2017.12.014. [18] Han Z. Y., Huang X. G., and Cao Y. G.(2014). A nonlinear cumulative evolution model for corrosion fatigue damage. Journal of Zhejiang University-SCIENCE A, 15(6), pp. 447-453. DOI: 10.1631/jzus.A1300362. [19 ] Hazra M., and Singh S . (2018). Corrosion-induced fatigue failure of a first-stage flow straightener vane of an Aeroengine . Journal of Failure Analysis and Prevention, 2018, 18(4): 819-827. DOI: 10.1007/s11668-018-0467-8. [20] He X. L., Wei Y. H., Hou L. F., Yan Z. F., Guo C. L., and Han P. J. (2014). Investigation on corrosion fatigue property of epoxy coated AZ31magnesium alloy in sodium sulfate solution. Theoretical and Applied Fracture Mechanics, 70, pp. 39-48. DOI: 10.1016/j.tafmec.2014.03.002. [21] Mhaede M. (2012). Influence of surface treatments on surface layer properties, fatigue and corrosion fatigue performance of AA7075 T73. Materials and Design, 41, pp. 61-66. DOI: 10.1016/j.matdes.2012.04.056. [22] Chan C., Yue T., and Man H. (2003). The effect of excimer laser surface treatment on the pitting corrosion fatigue behavior of aluminium alloy 7075. Journal of Materials Science, 38 (12), pp. 2689-2702. DOI: 10.1023/A:1024498922104. [23] Prevey P., and Cammett J. (2001). The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. International Journal of Fatigue, 26 (9), pp.975-982. DOI: 10.1016/j.ijfatigue.2004.01.010. [24] Ahnia F., and Demri B. (2013). Evaluation of aluminum coatings in simulated marine environment. Surfaces & Coating Technology, 220(15), pp. 232-236. DOI: 10.1016/j.surfcoat.2012.12.011. [25] Ahn S. H., Park K. J., Oh K. N., Hwang S. D., Park B. J., Kwon H. S., and Shon M. Y. (2015). Effects of Sn and Sb on the corrosion resistance of AH 32 steel in a cargo oil tank environment. Metals and Materials International, 21(5), pp. 865-873. DOI:10.1007/s12540-015-5164-5. [26] Wang R. (2008). A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip. International Journal of Fatigue, 30, pp.1376-1386. DOI: 10.1016/j.ijfatigue.2007.10.007. [27] Huang X. G., Xu J. Q., and Feng M. L. (2013). Energy principle of corrosion environment accelerating crack propagation during anodic dissolution corrosion fatigue. Journal of Shanghai Jiao tong University (Sci.), 18(2), pp. 190-196. DOI: 10.1007/s12204-013-1382-5. [28] Kim S. J., Lee S. J., Park Y. S., Jeong J. Y., and Jang S. K. (2014). Influence of sealing on damage development in thermally sprayed Al–Zn–Zr coating. Science of Advanced Material, 6 (9), pp. 2066-2070. DOI: 10.1166/sam.2014.2118.

RkJQdWJsaXNoZXIy MjM0NDE=