Issue 48
C. Santus, Frattura ed Integrità Strutturale, 48 (2019) 442-450; DOI: 10.3221/IGF-ESIS.48.42 450 DOI: 10.1016/j.triboint.2014.02.017. [15] Vázquez, J., Navarro, C., Domínguez, J. (2017). Analysis of fretting fatigue initial crack path in Al7075-T651 using cylindrical contact, Tribol. Int., 108, pp. 87–94, DOI: 10.1016/j.triboint.2016.09.023. [16] Golden, P.J., Calcaterra, J.R. (2006). A fracture mechanics life prediction methodology applied to dovetail fretting, Tribol. Int., 39(10), pp. 1172–1180, DOI: 10.1016/j.triboint.2006.02.006. [17] Golden, P.J., Shepard, M.J. (2007). Life prediction of fretting fatigue with advanced surface treatments, Mater. Sci. Eng. A, 468–470, pp. 15–22, DOI: 10.1016/j.msea.2006.10.168. [18] Juuma, T. (1999). Torsional fretting fatigue strength of a shrink-fitted shaft, Wear, 231(2), pp. 310–318, DOI: 10.1016/S0043-1648(99)00249-5. [19] Juuma, T. (2000). Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub, Tribol. Int., 33(8), pp. 537–543, DOI: 10.1016/S0301-679X(00)00102-X. [20] Alfredsson, B. (2009). Fretting fatigue of a shrink-fit pin subjected to rotating bending: Experiments and simulations, Int. J. Fatigue, 31(10), pp. 1559–1570, DOI: 10.1016/j.ijfatigue.2009.04.019. [21] Lanoue, F., Vadean, A., Sanschagrin, B. (2011). Fretting fatigue strength reduction factor for interference fits, Simul. Model. Pract. Theory, 19(9), pp. 1811–1823, DOI: 10.1016/j.simpat.2011.05.004. [22] Bertini, L., Santus, C. (2015). Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling, Int. J. Fatigue, 81, pp. 179–190, DOI: 10.1016/j.ijfatigue.2015.08.007. [23] Bertini, L., Santus, C., Merlo, A., Bandini, M. (2016). A fretting fatigue setup for testing shrink-fit connections and experimental evidence of the strength enhancement induced by deep rolling, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 230(9), pp. 1432–1439, DOI: 10.1177/0954406215612817. [24] Proudhon, H., Buffière, J.-Y., Fouvry, S. (2007). Three-dimensional study of a fretting crack using synchrotron X-ray micro-tomography, Eng. Fract. Mech., 74(5), pp. 782–793, DOI: 10.1016/j.engfracmech.2006.06.019. [25] Lamacq, V., Dubourg, M.-C., Vincent, L. (1997). A theoretical model for the prediction of initial growth angles and sites of fretting fatigue cracks, Tribol. Int., 30(6), pp. 391–400, DOI: 10.1016/S0301-679X(96)00068-0. [26] Lamacq, V., Dubourg, M.-C. (1999). Modelling of initial fatigue crack growth and crack branching under fretting conditions, Fatigue Fract. Eng. Mater. Struct., 22(6), pp. 535–542, DOI: 10.1046/j.1460-2695.1999.00173.x. [27] Giner, E., Sukumar, N., Denia, F.D., Fuenmayor, F.J. (2008). Extended finite element method for fretting fatigue crack propagation, Int. J. Solids Struct., 45(22–23), pp. 5675–5687, DOI: 10.1016/j.ijsolstr.2008.06.009. [28] Giner, E., Sabsabi, M., Ródenas, J.J., Javier Fuenmayor, F. (2014). Direction of crack propagation in a complete contact fretting-fatigue problem, Int. J. Fatigue, 58, pp. 172–180, DOI: 10.1016/j.ijfatigue.2013.03.001. [29] Majzoobi, G.H., Abbasi, F. (2017). On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading, Surf. Coatings Technol., 328, pp. 292–303, DOI: 10.1016/j.surfcoat.2017.08.067. [30] Abbasi, F., Majzoobi, G.H. (2018). Effect of out-of-phase loading on fretting fatigue response of Al7075-T6 under cyclic normal loading using a new testing apparatus, Eng. Fract. Mech., 188, pp. 93–111, DOI: 10.1016/j.engfracmech.2017.08.010. [31] Navarro, C., Vázquez, J., Domínguez, J. (2017). Nucleation and early crack path in fretting fatigue, Int. J. Fatigue, 100, pp. 602–610, DOI: 10.1016/j.ijfatigue.2016.12.028. [32] Araújo, J.A., Almeida, G.M.J., Ferreira, J.L.A., da Silva, C.R.M., Castro, F.C. (2017). Early cracking orientation under high stress gradients: The fretting case, Int. J. Fatigue, 100, pp. 611–618, DOI: 10.1016/j.ijfatigue.2016.12.013. [33] Vantadori, S., Fortese, G., Ronchei, C., Scorza, D. (2017). A stress gradient approach for fretting fatigue assessment of metallic structural components, Int. J. Fatigue, 101, pp. 1–8, DOI: 10.1016/j.ijfatigue.2017.04.004. [34] Fouvry, S., Gallien, H., Berthel, B. (2014). From uni- to multi-axial fretting-fatigue crack nucleation: Development of a stress-gradient-dependent critical distance approach, Int. J. Fatigue, 62, pp. 194–209, DOI: 10.1016/j.ijfatigue.2013.05.016. [35] Beghini, M., Bertini, L., Monelli, B.D., Santus, C., Bandini, M. (2014). Experimental parameter sensitivity analysis of residual stresses induced by deep rolling on 7075-T6 aluminium alloy, Surf. Coatings Technol., 254, pp. 175–186, DOI: 10.1016/j.surfcoat.2014.06.008. [36] Santus, C., Taylor, D., Benedetti, M. (2018). Experimental determination and sensitivity analysis of the fatigue critical distance obtained with rounded V-notched specimens, Int. J. Fatigue, 113, pp. 113–125, DOI: 10.1016/j.ijfatigue.2018.03.037. [37] Santus, C., Taylor, D., Benedetti, M. (2018). Determination of the fatigue critical distance according to the Line and the Point Methods with rounded V-notched specimen, Int. J. Fatigue, 106, pp. 208–218, DOI: 10.1016/j.ijfatigue.2017.10.002.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=