Issue 48
K. Kimakh et alii, Frattura ed Integrità Strutturale, 48 (2019) 429-441; DOI: 10.3221/IGF-ESIS.48.41 440 DOI:10.1016/j.ijfatigue.2008.06.003. [5] Guoliang, L. Chuanzhen, H. Bin, Z Xiangyu, W. and Zhanqiang, L. (2016). Surface integrity and fatigue performance of 17-4PH stainless steel after cutting operations, Surface & Coatings Technology, 307, pp. 182-189. DOI:10.1016/j.surfcoat.2016.08.086. [6] Suraratchaï, M. Mabru, C. Chieragatti, R. and Rezai Aria, F. (2005). Influence de gammes d'usinage sur la tenue en fatigue d'un alliage léger aéronautique, 17ème Congrès Français de Mécanique. Troyes, France. https://www.researchgate.net/publication/27811748_Influence_de_gammes_d 'usinage_sur_la_tenue_en_fatigue_d'u n_alliage_leger_aeronautique. [7] Alang, N.A. Razak, N.A. and K.Miska, A. (2011). Effect of Surface Roughness on Fatigue Life of Notched Carbon Steel, International Journal of Engineering & Technology, 11, pp. 160-163. http://www.ijens.org/Vol%2011%20I%2001/119101-2727%20IJET-IJENS.pdf. [8] Youngsik, C. (2015). Influence of feed rate on surface integrity and fatigue performance of machined surfaces, International Journal of Fatigue, 78, pp. 46-52. DOI: 10.1016/j.ijfatigue.2015.03.028. [9] Kimakh, K. Aghzer, S. Chouaf, A. Saoud, A. Mallil E. H. and Chergui, M. (2018). Improvement of fatigue life of AISI 1045 carbon steel of parts obtained by turning process through feed rate, Procedia Structural Integrity, 9, pp. 243-249. DOI: 10.1016/j.prostr.2018.06.039. [10] Davies, D. P. Jenkinsa, S. L. and Legga, S. J. (2014). The Effect Machining Processes can have on the Fatigue Life and Surface Integrity of Critical Helicopter Components. Procedia CIRP 13. PP. 25-30. DOI: 10.1016/j.procir.2014.04.005. [11] Javidi, A. Rieger, U. and Eichlseder, W. (2008). The effect of machining on the surface integrity and fatigue life, International Journal of fatigue, 30, pp. 2050–2055. DOI: 10.1016/j.ijfatigue.2008.01.005. [12] E8/E8M-13a. Standard Test Methods for Tension Testing of Metallic Materials, ASTM, 2013. [13] E466–07. Standard Practice for Conducting Force Controlled Constant Amplitude Axial, ASTM, 2007. [14] Kimakh, K. Aghzer, S. Chouaf, A. Saoud, A. Mallil E. H. and Chergui, M. (2018). Analytical model for predicting surface roughness as a function of aisi 1045 steel machining parameters, International Journal of Modern Manufacturing Technologies, 10, pp. 50-56. http://www.ijmmt.ro/vol10no12018/08_Khadija_Kimakh.pdf. [15] ISO4288. Spécification géométrique des produits (GPS) -- État de surface: Méthode du profil -- Règles et procédures pour l'évaluation de l'état de surface,ISO, 1996. [16] Bagehorn, S. Wehr, J and Maier, H. J. (2017). Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts, International Journal of Fatigue, 102. pp. 135-142. DOI: 10.1016/j.ijfatigue.2017.05.008. [17] Itoga, H. Tokaji, K. Nakajima, M. and Ko, H. N. (2003). Effect of surface roughness on step-wise S–N characteristics in high strength steel, International Journal of Fatigue, 25, pp. 379–385. DOI: 10.1016/S0142-1123(02)00166-4. [18] J. Wang, Y. Zhang, Q, Sun, S. Liu, B, Shi and H. Lu. (2016). Giga-Fatigue Life Prediction of FV520B-I with Surface, Materials & Design, 89. pp. 1028-1034. DOI: 10.1016/j.matdes.2015.10.104. [19] Murakami, Y. (2002). Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusion, Oxford, Elsevier. DOI:10.1016/B978-0-08-044064-4.X5000-2 N OMENCLATURE S Y 02 Offset yield stress S UTS Ultimate tensile stress A Elongation E Elasticity modulus HV Vickers hardness λc Cut-off Ra Arithmetical mean height Ry Maximum Height of the Profile N Spindle speed f Feed rate
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=