Issue 48

M. Tirenifi et alii, Frattura ed Integrità Strutturale, 48 (2019) 357-369; DOI: 10.3221/IGF-ESIS.48.34 369 R EFERENCES [1] Janas, P, Krejsa, M, Krejsa, V. (2009). Structural reliability assessment using a direct determined probabilistic calculation. structural and environmental engineering computing, pp. 72. DOI: 10.4203/ccp.91.72. [2] Janas, P., Krejsa, M., Krejsa, V., Bris, R. (2015). Structural reliability assessment using direct optimized probabilistic calculation with respect to the statistical dependence of input variables. Safety and Reliability of Complex Engineered Systems. pp. 4125–4132. DOI:10.1201/b19094-540. [3] Kralik, J., Kralik, Jr J. (2014). Failure probability of NPP Communication Bridge under the extreme loads. Applied Mechanics and Materials, pp. 81–85. DOI: 10.4028 /www.scientific.net/AMM.617.81. [4] Krejsa, M., Janas, P., Yilmaz, I., Marschalko, M., Bouchal, T. (2013). The use of the direct optimized probabilistic calculation method in design of bolt reinforcement for underground and mining workings. The Scientific World Journal, pp. 1–13. DOI:10.1155/2013/267593. [5] Krejsa, M., Janas, P., Krejsa, V., Kala, Z., Seitl, S. (2016). DOProC-based reliability assessment of steel structures exposed to fatigue. Perspectives in Science, 7. pp. 228–235. DOI:10.1016/ j.pisc.2015.11.037. [6] Krejsa, M., Kralik, J. (2015). Probabilistic computational methods in structural failure analysis. Journal of Multiscale Modelling, 6(2). pp. 1–5. DOI:10.1142/S1756973715500067. [7] Koubova, L., Janas, P., Krejsa, M. (2016). Load carrying capacity of steel arch reinforcement taking into account the geometrical and physical nonlinearity. Applied Mechanics and Materials, pp. 709–716. DOI: 10.4028 /www.scientific.net/AMM.821.709. [8] Zienkiewicz, O.C., Taylor, R.L., Fox, D.D. (2013). The Finite Element Method for Solid and Structural Mechanics. 7th. Butterworth-Heinemann, Oxford. DOI:10.1016/B978-1-85617-634-7.00025-9. [9] Hobbacher, A. (1993). Stress intensity factors of welded joints. Engineering Fracture Mechanics, 46(2). pp. 173–182. DOI: 10.1016/0013-7944(93)90278-Z [10] Lazzarin, P., Tovo, R. (1998) A notch intensity factor approach to the stress analysis of welds. Fatigue & Fracture of Engineering Materials & Structures, 21(9). pp. 1089–1103. DOI:10.1046/j. 1460-2695.1998.00097.x. [11] Dawei, X. (1995). An exact solution on the stress analysis of fillet welds. Applied Mathematics and Mechanics, 16(11), pp. 1019–1024. DOI: 10.1007/BF02484368 [12] Guedes Soares, C., Bai-Qiao, C. (2016). Effects of plate configurations on the weld induced deformations and strength of fillet-welded plates, Marine Structures, 50. Pp. 243-259. DOI: 10.1016/j.marstruc.2016.09.004 [13] Kenno, S.Y., Das, S., Kennedy, J.B., Rogge, R.B., Gharghouri, M. (2010). Residual stress distributions in ship hull specimens. Marine Structure, 23. pp. 263-273. DOI: 10.1016/j.marstruc.2010.07.001. [14] Park, J.U., An, G., Woo, W.C., Choi, J.H., Ma, N. (2014). Residual stress measurement in an extra thick multi-pass weld using initial stress integrated inherent strain method. Marine Structure, 39. pp. 424-437. DOI: 10.1016/j.marstruc.2014.10.002. [15] Gannon, L., Liu, Y., Pegg, N., Smith, M.J. (2012). Effect of welding-induced residual stress and distortion on ship hull girder ultimate strength. Marine Structure, 28. pp: 25-49. DOI: 10.1016/j.marstruc.2012.03.004. [16] Gannon, L., Liu, Y., Pegg, N., Smith, M.J. (2010). Effect of welding sequence on residual stress and distortion in flat- bar stiffened plates. Marine Structure, 23. pp. 385-404. DOI: 10.1016/j.marstruc.2010.05.002. [17] Cui, W., Mansour, A.E. (1998). Effects of welding distortions and residual stresses on the ultimate strength of long rectangular plates under uniaxial compression. Marine Structure, 11. pp. 251-269. DOI: 10.1016/S0951-8339(98)00012-4. [18] Goldak, J. (1984). A new finite element model for welding heat source. Metallurgical and Materials Transactions B, 15(2). pp: 299-305. DOI: 10.1007/BF02667333. [19] KEMPPI. (2013). Product introduction of KEMPPI Pro Evaluation 3200, 4200 and 5200. Lahti, Finland: Kemppi Oy. [20] Estefen, T.P., Estefen, S.F. (2012). Buckling propagation failure in semi-submersible platform columns. Marine Structure, 28(1). pp: 2-24. DOI: 10.1016/j.marstruc.2012.05.003. [21] ABAQUS. (2010). User's and theory manuals version 6.10-1. RI, USA: Hibbit, Karlsson and Sorensen, Inc. [22] American Society of Mechanical Engineering. (2013). ASME Boiler & Pressure Vessel Code II Part A2 Materials - Ferrous Material Specific. [23] Bensari. A. (2018). Numerical Simulation of a Steel Weld Joint and Fracture Mechanics Study of a Compact Tension Specimen for Zones of Weld Joint, Fracture and Structural Integrity, 47, p 17-29, DOI: 10.3221/IGF-ESIS.47.02 [24] Shubert, M., Pandheeradi, M., Arnold, F. and Habura, C. (2010). An Abaqus Extension for Welding Simulations and Bechtel. Marine Propulsion Corporation, Providence, RI, USA.

RkJQdWJsaXNoZXIy MjM0NDE=