Issue 48
L. Reis et alii, Frattura ed Integrità Strutturale, 48 (2019) 318-331; DOI: 10.3221/IGF-ESIS.48.31 331 [5] Reis, L., Li, B., de Freitas, M. (2009). Crack initiation and growth path under multiaxial fatigue loading in structural steels, International Journal of Fatigue, 31, pp. 1660-1668. DOI: 10.1016/j.ijfatigue.2009.01.013. [6] Papadopoulos, I. V. (2002). Critical plane approaches in high-cycle fatigue: on the definition of the amplitude and mean value of the shear stress acting on the critical plane, Fatigue & Fracture of Engineering Materials & Structures, 21(3), pp. 269-285. DOI: 10.1046/j.1460-2695.1998.00459.x. [7] Manuel de Freitas, Luis Reis, and Bin Li (2006). Comparative study on biaxial low-cycle fatigue behaviour of three structural steels, Fatigue & Fracture of Engineering Materials & Structures, 29(12), pp. 992-999. DOI: 10.1111/j.1460-2695.2006.01061.x. [8] Xia, T., Yao, W. (2013). Comparative research on the accumulative damage rules under multiaxial block loading spectrum for 2024-T4 aluminium alloy, International Journal of Fatigue, 48, pp. 257-265. DOI: 10.1016/j.ijfatigue.2012.11.004. [9] Palin-Luc, T., Lasserre, S. (1998). An energy based criterion for high cycle multiaxial fatigue, European Journal of Mechanics, 17(2), pp. 237-251. DOI: 10.1016/S0997-7538(98)80084-3. [10] Morel, F., Morel, A., Nadot, Y. (2009). Comparison between defects and micro-notches in multiaxial fatigue – The size effect and the gradient effect, International Journal of Fatigue, 31(2), pp. 263-275. DOI: 10.1016/j.ijfatigue.2008.09.005. [11] V. Anes, L. Reis, B. Li, M. Freitas, and C.M. Sonsino (2014). Minimum Circumscribed Ellipse (MCE) and Stress Scale Factor (SSF) criteria for multiaxial fatigue life assessment, Theoretical and Applied Fracture Mechanics, 73, pp. 109- 119. DOI: 10.1016/j.tafmec.2014.08.008. [12] Hertel, O., Vormwald, M. (2014). Multiaxial fatigue assessment based on a short crack growth concept, Theoretical and Applied Fracture Mechanics, 73, pp. 17-26. DOI: 10.1016/j.tafmec.2014.06.010. [13] Louks, R., Gerin, B., Draper, J., Askes, H., Susmel, L. (2014). On the multiaxial fatigue assessment of complex three- dimensional stress concentrators, International Journal of Fatigue, 63, pp. 12-24. Doi: 10.1016/j.ijfatigue.2014.01.001. [14] Anes, V., Reis, L., Li, B., Fonte, M., de Freitas, M. (2014). New approach for analysis of complex multiaxial loading paths, International Journal of Fatigue, 62, pp. 21-33. DOI: 10.1016/j.ijfatigue.2013.05.004. [15] Anes, V. (2015). Damage Analysis of Complex Loading Paths, Universidade de Lisboa, Instituto Superior Técnico, doctoral dissertation. [16] Findley, W. N. (1958). A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Engineering Materials Research Laboratory, Division of Engineering, Brown University. [17] Brown, M. W., Miller, K. J. (1973). A theory for fatigue failure under multiaxial stress-strain conditions, Proceedings of the Institute of Mechanical Engineers, 187(1), pp. 745-755. DOI: 10.1243/PIME_PROC_1973_187_069_02. [18] Fatemi, A., Socie, D.F. (1988). A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading, Fatigue and Fracture of Engineering Materials and Structures, 11(3), pp. 149-165. DOI: 10.1111/j.1460-2695.1988.tb01169.x [19] Smith, K. N., Watson, P., Topper, T. H. (1970). A stress-strain function for the fatigue of metals, Journal of Materials, 5(4), pp. 767-778. [20] Socie, D. F., Marquis, G. B. (2000). Multiaxial Fatigue. Society of Automotive Engineers, Warrendale, PA, EUA. [21] KC Liu. (1993). A method based on virtual strain-energy parameters for multiaxial fatigue life prediction, ASTM special technical publication, 1191, pp. 67–67. DOI: 10.1520/STP24796S [22] ASTM E1049, Standard Practices for Cycle Counting in Fatigue Analysis, ASTM International, 2011. [23] Anes, V., Reis, L., Li, B., de Freitas, M. (2014). New cycle counting method for multiaxial fatigue, International Journal of Fatigue, 67, pp. 78-94. DOI: 10.1016/j.ijfatigue.2014.02.010 [24] Wang, C. H., Brown, M. W. (1996). Life prediction techniques for variable amplitude multiaxial fatigue – part 1: theories, ASME Journal of Engineering and Materials Technology, 118, pp. 367–370. DOI: 10.1115/1.2806821. [25] Lv, Z., Huang, H-Z., Zhu, S-P., Gao, H., Zuo, F. (2015). A modified nonlinear fatigue damage accumulation model, International Journal of Damage Mechanics, 24, pp. 168-181. DOI: 10.1016/j.ijmecsci.2015.06.016. [26] Reis, L. (2004). Comportamento Mecânico de Aços em Fadiga Multiaxial a Amplitude de Carga Constante e Síncrona, Universidade Técnica de Lisboa, Instituto Superior Técnico, doctoral dissertation. [27] MATLAB Release 2015a, The MathWorks, Inc., Natick, Massachusetts, United States. [28] Anes, V., Caxias, J., Freitas, M., Reis, L. (2017). Fatigue damage assessment under random and variable amplitude multiaxial loading conditions in structural steels, International Journal of Fatigue, 100, pp. 591-601. DOI: 10.1016/j.ijfatigue.2016.12.009 [29] AFGROW v5.2.5.19, LexTech, Inc., Centerville, Ohio, United States. [30] Aircher, W., Branger, J., van Dijk, G. M., Ertelt, J., Hück, M., de Jonge, J. B. (1976). Description of a fighter aircraft loading for standard for fatigue evaluation. FALSTAFF, Common Report of FCW Emmen, LBF, NRL, IABG.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=