Issue 48
F.A.L. Viana et alii, Frattura ed Integrità Strutturale, 48 (2019) 286-303; DOI: 10.3221/IGF-ESIS.48.29 303 [17] Campilho, R.D.S.G., Banea, M.D., Neto, J.A.B.P., da Silva, L.F.M. (2013). Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int J Adhes Adhes. 44, pp. 48-56. DOI: 10.1016/j.ijadhadh.2013.02.006. [18] Faneco, T., Campilho, R., Silva, F., Lopes, R. (2017). Strength and Fracture Characterization of a Novel Polyurethane Adhesive for the Automotive Industry. J Test Eval. 45, pp. 398-407. DOI: 10.1520/JTE20150335. [19] Fernandes, R.L., Campilho, R.D.S.G. (2017). Testing different cohesive law shapes to predict damage growth in bonded joints loaded in pure tension. J Adhesion. 93, pp. 57-76. DOI: 10.1080/00218464.2016.1169176. [20] Constante, C.J., Campilho, R.D.S.G., Moura, D.C. (2015). Tensile fracture characterization of adhesive joints by standard and optical techniques. Eng Fract Mech. 136, pp. 292-304. DOI: 10.1016/j.engfracmech.2015.02.010. [21] Leitão, A.C.C., Campilho, R.D.S.G., Moura, D.C. (2016). Shear Characterization of Adhesive Layers by Advanced Optical Techniques. Exp Mech. 56, pp. 493-506. DOI: 10.1007/s11340-015-0111-4. [22] Markolefas, S.I., Papathanassiou, T.K. (2009). Stress redistributions in adhesively bonded double-lap joints, with elastic– perfectly plastic adhesive behavior, subjected to axial lap-shear cyclic loading. Int J Adhes Adhes. 29, pp. 737-744. DOI: 10.1016/j.ijadhadh.2009.04.001. [23] Giovanola, J.H., Finnie, I. (1984). A review of the use of the J integral as a fracture parameter. Solid Mechanics Archives. 9, pp. 197-225. [24] de Moura, M.F.S.F., Campilho, R.D.S.G., Gonçalves, J.P.M. (2008). Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Compos Sci Technol. 68, pp. 2224-2230. DOI: 10.1016/j.compscitech.2008.04.003. [25] de Moura, M.F.S.F., Campilho, R.D.S.G., Gonçalves, J.P.M. (2009). Pure mode II fracture characterization of composite bonded joints. Int J Solids Struct. 46, pp. 1589-1595. DOI: 10.1016/j.ijsolstr.2008.12.001. [26] Anyfantis, K.N., Tsouvalis, N.G. (2012). A novel traction–separation law for the prediction of the mixed mode response of ductile adhesive joints. Int J Solids Struct.49, pp. 213-226. DOI: 10.1016/j.ijsolstr.2011.10.001. [27] Abaqus®. Documentation of the software Abaqus®. Dassault Systèmes. Vélizy-Villacoublay 2013. [28] Shahverdi, M., Vassilopoulos, A., Keller, T. (2013). Modeling effects of asymmetry and fiber bridging on Mode I fracture behaviour of bonded pultruded composite joints. Eng Fract Mech. 99, pp. 335 - 348. [29] Ameli, A., Papini, M., Spelt, J.K. (2010). Fracture R-curve of a toughened epoxy adhesive as a function of irreversible degradation. Materials Science and Engineering: A. 527, pp. 5105-14. DOI: 10.1016/j.msea.2010.04.099. [30] Pardoen, T., Ferracin, T., Landis, C.M., Delannay, F. (2005). Constraint effects in adhesive joint fracture. J Mech Phys Solids. 53, pp. 1951-1983. DOI: 10.1016/j.jmps.2005.04.009. [31] Badulescu, C., Cognard, J.Y., Créac’hcadec, R., Vedrine, P. (2012). Analysis of the low temperature-dependent behaviour of a ductile adhesive under monotonic tensile/compression–shear loads. Int J Adhes Adhes. 36, pp. 56-64. DOI: 10.1016/j.ijadhadh.2012.03.009. [32] Zhao, B., Lu, Z.-H., Lu, Y.-N. (2014). Two-dimensional analytical solution of elastic stresses for balanced single-lap joints—Variational method. Int J Adhes Adhes. 49, pp. 115-126. DOI: 10.1016/j.ijadhadh.2013.12.026. [33] Reis, P.N.B., Antunes, F.J.V., Ferreira, J.A.M. (2005). Influence of superposition length on mechanical resistance of single-lap adhesive joints. Compos Struct. 67, pp. 125-133. DOI: 10.1016/j.compstruct.2004.01.018. [34] de Castro, J., Keller, T. (2008). Ductile double-lap joints from brittle GFRP laminates and ductile adhesives, Part I: Experimental investigation. Compos: Part B. 39, pp. 271-281. DOI: 10.1016/j.compositesb.2007.02.015. [35] Jiang, W., Qiao, P. (2015). An improved four-parameter model with consideration of Poisson’s effect on stress analysis of adhesive joints. Engineering Structures. 88, pp. 203-215. DOI: 10.1016/j.engstruct.2015.01.027. [36] Vable, M., Reddy Maddi, J. (2006). Boundary element analysis of adhesively bonded joints. Int J Adhes Adhes. 26, pp. 133-144. DOI: 10.1016/j.ijadhadh.2004.12.003. [37] Luo, Q., Tong, L. (2007). Fully-coupled nonlinear analysis of single lap adhesive joints. Int J Solids Struct. 44, pp. 2349- 70. DOI: 10.1016/j.ijsolstr.2006.07.009. [38] Grant, L.D.R., Adams, R.D., da Silva, L.F.M. (2009). Experimental and numerical analysis of single-lap joints for the automotive industry. Int J Adhes Adhes. 29, pp. 405-413. DOI: 10.1016/j.ijadhadh.2008.09.001. [39] da Silva, L.F.M., Carbas, R.J.C., Critchlow, G.W., Figueiredo, M.A.V., Brown, K. (2009). Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int J Adhes Adhes. 29, pp. 621-632. DOI: 10.1016/j.ijadhadh.2009.02.012. [40] Davis, M., Bond, D. (1999). Principles and practices of adhesive bonded structural joints and repairs. Int J Adhes Adhes.19, pp. 91-105. DOI: 10.1016/S0143-7496(98)00026-8.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=