Issue 48
R. Baptista et alii, Frattura ed Integrità Strutturale, 48 (2019) 257-268; DOI: 10.3221/IGF-ESIS.48.27 267 weld geometry deflects the crack, and it was possible to use the MTS criterion to predict the crack propagating direction along the fatigue crack growth. When using 2D models, the extracted SIF showed less numerical noise in the simulation, but the recreated geometry is only an approximation of the real geometry. Therefore, one must recommend the use of 3D models when possible. R EFERENCES [1] Maier, B., Guster, C., Tichy, R. and Ecker, W. (2013). Influence of different microstructures of the welding zone on the fatigue crack growth behaviour of HSLA steels, , pp. 1–7. [2] Wang, Q., Liu, X., Wang, W., Yang, C., Xiong, X. and Fang, H. (2017). Mixed mode fatigue crack growth behavior of Ni-Cr-Mo-V high strength steel weldments, Int. J. Fatigue, 102, pp. 79–91, DOI: 10.1016/j.ijfatigue.2017.05.001. [3] Ayatollahi, M.R., Razavi, S.M.J. and Yahya, M.Y. (2015). Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique, Eng. Fract. Mech., 145, pp. 115–127. DOI: 10.1016/j.engfracmech.2015.03.027. [4] Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012). The numerical simulation of fatigue crack growth using extended finite element method, Int. J. Fatigue, 36(1), pp. 109–119. DOI: 10.1016/j.ijfatigue.2011.08.010. [5] DIN. (2013). EN 10149-2: Hot rolled flat products made of high yield strength steels for cold forming - Part 2: Technical delivery conditions for thermomechanically rolled steels. [6] RautaruukkiCorporation. RautaruukkiCorporation.(2014). Hot-Rolled Steel Sheets, Plates and Coils: Welding. [7] ASTM International. (2002). ASTM E466-96: Standard Practice for Conducting Force Controlled Constant Amplitude Axial. [8] ASTM International. (2001). ASTM E647-00: Standard Test Method for Measurement of Fatigue Crack Growth Rates. [9] Baptista, R., Santos, T., Marques, J., Guedes, M. and Infante, V. (2018). Fatigue behavior and microstructural characterization of a high strength steel for welded railway rails, Int. J. Fatigue, 117(January), pp. 1–8. DOI: 10.1016/j.ijfatigue.2018.07.032. [10] Dhondt, G. (2014). Application of the Finite Element Method to mixed-mode cyclic crack propagation calculations in specimens, Int. J. Fatigue, 58, pp. 2–11, DOI: 10.1016/j.ijfatigue.2013.05.001. [11] Paris, P. and Erdogan, F. (1963). A critical analysis of crack propagation laws, J. Basic Eng., 85(4), pp. 528–533. DOI: 10.1115/1.3656900. [12] Rabold, F. and Kuna, M. (2014). Automated Finite Element Simulation of Fatigue Crack Growth in Three- dimensional Structures with the Software System ProCrack, Procedia Mater. Sci., 3, pp. 1099–1104. DOI: 10.1016/j.mspro.2014.06.179. [13] Shi, J., Chopp, D., Lua, J., Sukumar, N. and Belytschko, T. (2010). Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions, Eng. Fract. Mech., 77(14), pp. 2840–2863. DOI: 10.1016/j.engfracmech.2010.06.009. [14] Erdogan, F. and Sih, G.C. (1963). On the Crack Extension in Plates Under Plane Loading and Transverse Shear, J. Basic Eng., 85(4), pp. 519. DOI: 10.1115/1.3656897. [15] Blažić, M., Maksimović, S., Petrović, Z., Vasović, I. and Turnić, D. (2014). Determination of fatigue crack growth trajectory and residual life under mixed modes, Stroj. Vestnik/Journal Mech. Eng., 60(4), pp. 250–254. DOI: 10.5545/sv-jme.2013.1354. [16] Fajdiga, G. (2015). Determining a kink angle of a crack in mixed mode fracture using maximum energy release rate , SED and MTS criteria, J. Multidiscip. Eng. Sci. Technol., 2(1), pp. 356–362. [17] Yang, Y. and Vormwald, M. (2017). Fatigue crack growth simulation under cyclic non-proportional mixed mode loading, Int. J. Fatigue, 102, pp. 37–47. DOI: 10.1016/j.ijfatigue.2017.04.014. [18] Yu, X., Li, L. and Proust, G. (2017). Fatigue crack growth of aluminium alloy 7075-T651 under proportional and non- proportional mixed mode I and II loads, Eng. Fract. Mech., 174, pp. 155–167. DOI: 10.1016/j.engfracmech.2017.01.008. [19] Zerres, P. and Vormwald, M. (2014). Review of fatigue crack growth under non-proportional mixed-mode loading, Int. J. Fatigue, 58, pp. 75–83. DOI: 10.1016/j.ijfatigue.2013.04.001. [20] Tanaka, K. (1974). Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Eng. Fract. Mech., 6(3). DOI: 10.1016/0013-7944(74)90007-1. [21] Nasri, K. and Zenasni, M. (2017). Fatigue crack growth simulation in coated materials using X-FEM, Comptes Rendus - Mec., 345(4), pp. 271–280. DOI: 10.1016/j.crme.2017.02.005.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=