Issue 48

O. A. Mocian et alii, Frattura ed Integrità Strutturale, 48 (2019) 230-241; DOI: 10.3221/IGF-ESIS.48.24 241 DOI: 10.1016/j.compstruct.2015.02.057. [15] Feng, D., Aymerich, F. (2013). Damage prediction in composite sandwich panels subjected to low-velocity impact, Compos. Part A-Appl. Sci. Manuf., 52, pp. 12-22, DOI: 10.1016/j.compositesa.2013.04.010. [16] Steeves, C., Fleck, N. (2004). Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modeling, Int. J. Mech. Sci., 46(4), pp. 585- 608, DOI: 10.1016/j.ijmecsci.2004.04.004. [17] Jiang, B., Li, Z., Lu, F. (2015). Failure mechanism of sandwich beams subjected to three-point bending, Compos. Struct., 133, pp. 739-745, DOI: 10.1016/j.compstruct.2015.07.056. [18] Vitale, J., Francucci, G., Xiong, J., Stocchi, A. (2017). Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels, Compos. Part A-Appl. S., 94, pp. 217-225, DOI: 10.1016/j.compositesa.2016.12.021. [19] Sokolinsky, V.S., Shen, H., Vaikhanski, L., Nutt, S.R. (2003). Experimental and analytical study of nonlinear bending response of sandwich beams, Compos. Struct., 60(2), pp. 219-229, DOI: 10.1016/S0263-8223(02)00293-3. [20] Zhang, F., Liu, W., Fang, H., Jia, Z. (2019). Flexural behavior of composite sandwich beams with different kinds of GFRP ribs in flatwise and edgewise positions, Compos. Part B-Eng., 156, pp. 229-239. DOI: 10.1016/j.compositesb.2018.08.053 [21] Styles, M., Compston, P., Kalyanasundaram, S. (2007). The effect of core thickness on the flexural behavior of aluminum foam sandwich structures, Compos. Struct., 80(4), pp. 532-538, DOI: 10.1016/j.compstruct.2006.07.002. [22] Massabò, R., Cavicchi, A. (2012). Interaction effects of multiple damage mechanisms in composite sandwich beams subject to time dependent loading, Int. J. Solids Struct., 49, pp. 720–738, DOI: 10.1016/j.ijsolstr.2011.11.012. [23] He, W., Liu, J., Wang, S., Xie, D. (2018). Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores, Compos. Struct., 189, pp. 37-53, DOI: 10.1016/j.compstruct.2018.01.024. [24] Funari, M.F., Greco, F., Lonetti, P. (2018). Sandwich panels under interfacial debonding mechanisms, Compos. Struct., 203, pp. 310–320, DOI: 10.1016/j.compstruct.2018.06.113. [25] Funari, M.F., Greco, F., Lonetti, P., Spadea, S. (2019). A numerical model based on ALE formulation to predict crack propagation in sandwich structures, Frattura ed Integrità Strutturale, 47, pp. 277-293, DOI: 10.3221/IGF-ESIS.47.21. [26] Park, J.H., Ha, S.K., Kang, K.W., Kim, C.W., Kim, H.S. (2008). Impact damage resistance of sandwich structure subjected to low velocity impact, J. Mater. Process. Tech., 201(1-3), pp. 425-430. DOI: 10.1016/j.jmatprotec.2007.11.196. [27] Crupi, V., Kara, E., Epasto, G., Guglielmino, E., Aykul, H. (2016). Theoretical and experimental analysis of glass fibre reinforced aluminium honeycomb sandwiches, J. Sandw. Struct. Mater., 20(1), pp. 42-69. DOI: 10.1177/1099636216629375. [28] Zhu, S., Chai, G.B. (2013). Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact, Compos. Struct., (101), pp. 204-214, DOI: 10.1016/j.compstruct.2013.02.010. [29] Dawood, M., Ballew, W., Seiter, J. (2011). Enhancing the resistance of composite sandwich panels to localized forces for civil infrastructure and transportation applications, Compos. Struct., 93(11), pp. 2983-2991, DOI: 10.1016/j.compstruct.2011.05.004. [30] Xie, Z., Zhao, W., Wang, X. (2017). Low-velocity impact behaviour of titanium honeycomb sandwich structures, J. Sandw. Struct. Mater., 20(8), pp. 1009-1027, DOI: 10.1177/1099636217728421. [31] Sun, G., Chen, D., Huo, X., Zheng, G., Li, Q. (2018). Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels, Compos. Struct., 184, pp. 110-124, DOI: 10.1016/j.compstruct.2017.09.025. [32] ISO 6603-2:2000, Plastics -- Determination of puncture impact behaviour of rigid plastics -- Part 2: Instrumented impact testing, International Organization for Standardization, Geneva, Switzerland [33] ASTM D7136/D7136M-15. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop weight impact event, West Conshohocken, PA, USA: ASTM International, 2015. [34] Mocian, O.A., Constantinescu, D.M., Sandu, M., Sorohan, St. (2018). Experimental and numerical analyses of the impact response of lightweight sandwich panels, Mater. Today-Proc., 5(13), pp. 26634-26641, DOI: 10.1016/j.matpr.2018.08.128. [35] Mocian, O.A., Constantinescu, D.M., Sandu, M., Sorohan, St. (2018). Experimental evaluation of the response of sandwich panels in low-velocity impact, P. I. Mech. Eng. L-J. Mat., DOI: 10.1177/ 1464420718798168. [36] Lakshmana, C.R., Narayanamurthy, V., Simha, K.R.Y. (2016). Applied Impact Mechanics, John Wiley & Sons Ltd, United Kingdom. [37] https://imagej.nih.gov/ij/, last accessed January 19, 2019.

RkJQdWJsaXNoZXIy MjM0NDE=